

The Hacker's Guide To Adam, vol. 2

by Ben Hinkle

Published by Peter and Ben Hinkle
117 Northview Rd.
Ithaca, NY 14850

© Ben Hinkle, 1986

I '1 ' ,.._

Forward

In the year since Ben and I wrote Vol. 1 of the Hacke(s Guide (available from us
for $12.95, postpaid), we have actually spent less time with our Adam than I
anticipated. We have many CP/M programs, but have not used them much, largely
because we never have the manuals. We also got a Macintosh (as you can see),
which has been a distraction. There is a lot of activity in the Adam community,
however, largely with modems and CP/M, and anyone interested should write to
the user groups advertized in Family Computing.

Our major project with Adam has been Ben's interpretation of a disassembly
printout of SmartBASIC. He took it on out of curiosity last fall, using the information
in Vol. 1 and general information from "How to program the 280" by Rodnay Zaks,
"Mapping the Commodore 64" by Seldon Leeman, and "Microsoft BASIC decoded
and other mysteries for the TRS-80" by James Lee Farvour. Ben wrote it up, but
had to leave for summer school, so Maija and I made the last corrections and
printed it out (something that seems to have taken forever). The imperfect copy
came from my lack of patience with files that refused to print, and the like. I hope
there are not too many errors. If you find any, please let us know.

I think that the Adam is an excellent computer, and a fine introduction to the
computer world. This book should be very helpful to anyone who wants to learn
SmartBASIC really well, and get beneath the superficial layer of any higher
language, into the actual machine. Ben has tried to make vol. 2 more
understandable to the novice than vol. 1 was, but you should realize that he is only
in the tenth grade, and parts are bound to be hard to follow. If you have questions,
please include a SASE in your letter.

Peter Hinkle, July, 1986

At the second printing we thank George Havach and earl Cummings for
pointing out many typos and other errors that have now been corrected.

CONTENTS

L BASIC Overview 1
2. Zero Page 13
3. Keywords 14
4. Math Routines 19
5. BASIC Commands 29
6. Parser 40
7. Data Table 51
8. Screen Routines 58
So Tape Routines 64
10. Graphics 73
11. BASIC Changes 77
Appendix 1. Programs 89
Appendix 2. Hello code 90
Appendix 3. Schematics 98
Glossary 104

Chapter 1 : BASIC Overview

When you load in SmartBASIC by putting the tape in the drive and hitting
reset, three things happen: the machine language program that is SmartBASIC is
stored in RAM by the boot routine, the Program Counter register of the ZB0
microprocessor is set to $100 and the whole thing goes into the labyrinth of
subroutines and loops. First it goes to the routine at $4061, which is later replaced
by the input buffer. This setup routine writes the interrupt routines to zero page,
clears the screen and tape buffers, then looks for and loads the HELLO program
from the tape, or, if none exists, prints the message at $043C ("COLECO
SmartBASIC V1 .0") on the screen. This is what you first see when BASIC is loaded
from tape. After the setup routine introduces you to BASIC, it falls into the
immediate mode at $3EA3. I call this routine the "Central loop" because it is the
heart of BASIC, controlling the flow of execution when you are either typing in a
command, waiting as a command is executed, or just watching while the cursor
blinks at you. As outlined on the following page, the Central loop reads the
keyboard and interprets the line of input.

The Central loop
The Central loop begins by resetting the ZB0 Stack Pointer, IX and IY registers

to $D380. This clears any GOSUB or FOR ... NEXT loops (pointed to by IX and IY),
and is used after a program or command has executed, when the stack could have
some garbage which is no longer needed. The loop accomplishes this task by
calling $1757. After the stacks are reset and the HELLO program or copywrite
statement printed, the routine at $2F76 is called to generate the next thing you see
on the screen: a return character and a prompt (]),which provides you with visual
feedback that the loop is working.

The Central loop then calls the subroutine at $2F7F to scan the keyboard for a
command or line. This is the routine that is executing when you are in the
immediate mode and the cursor is blinking or you are typing in a command. When
a program is loaded from tape or disk, the same routine is used but it looks at the
tape instead of the keyboard on AdamNet (see vol 1, p. 49). The characters
received from the input device are put in a buffer at $3F77 and also printed on the
screen. It also acts on any control ASCII you type (e.g. , tab, left arrow, or any other
ASCII code in the table at $3051). When a "return" character is received the ZB0
returns to the Central loop and parses the line (Parse means interpret. For
explanation of jargon please see the glossary). But the loop must first decide if you

1

actually typed in a line or just pressed the return key without typing anything
beforehand. Spaces also don't count as a line. If the line is empty, it prints the
prompt again and restarts reading the keyboard. But if the line contains some sort
of non-space ASCII, the Central loop calls $3565 to check for the presence of a
line number, indicating a program line. This would happen if you were typing in a
program, or erasing any unwanted line previously typed in. If a line number is
present, it then decides if you want to erase a line (indicated by only typing in the
line number). The loop does this by seeing if you typed in anything after the line
number. If you didn't, it calls $31 EE to erase the line from the tables that store your
program as you type or load it in. But if a command follows the line number, it calls
$3609 to parse the rest of the line, and then calls $314A to store the line in your
growing program tables.

Immediate mode
command

Reset
Stacks

1757

GetLine

2F7F
Entering BASIC
program llnes

Parse line 14-..J Line#?

3609

execute
command

17E0

no----~-"
yes

Erase line? !--t-1 Parse line

yes

Flowchart of

Central Loop

3609

enter line
into tables

314A

If the Central loop does not find a line number at the beginning of the line, it
assumes that you have entered an immediate command (e.g. , SAVE) and it parses
the line by calling $3609 and executes the line by calling $17E0, returning to the
Central loop when finished.

2

The Parser
Parsing is the process of replacing the ASCII codes you type in with shorter,

more compact tokens in a form called crunch code. It helps speed up execution of
the command because less time is spent converting your ASCII line as the
command executes. While the speed difference is not noticeable in the immediate
mode, it is in programs. This is due to the execution of immediate mode commands
directly after parsing, while in programs, the lines are parsed as you type them in.
When you RUN the program , the lines are fully parsed and therefore are faster.
The routine that parses the input you type in is called "Parse line", or the Parser,
and is at $3609. The parser is called by the Central loop, and, after it is done
translating the line, returns to the loop, as seen in the flowchart on the following
page. •

The "Parse line" routine reads the first word in the line and compares it with
words in the primary word table at $11 0. This table has the format of: 1. token, 2.
address of vectors in parse vector table lo, hi, 3. number of letters in the command,
4. ASCII of the command. Each command has a different token, which is used
during execution. The Parse routine compares the ASCII of the first word with the
ASCII of the first command. II they don1 match, then it compares it with the second
command. This repeats until a match is found or it reaches the end

of the table, when it assumes the first word is a variable and parses it like LET.
When a match is found, the routine puts the token of the matched command in a
buffer called the Crunch code buffer (e.g. , it would put a '7' in the buffer for a
'PRINr command because the token for PRINT is 7), and looks at the command's
"address of vectors in parse vector table" (2nd and 3rd bytes in primary word table).
This address in the parse vector table lists the number of parse vectors for the
syntax of that command, followed by the vectors to those Parse routines. An
example of this would be "GOTO 30". After finding the GOTO, the Parser only
needs to check for a line number, so the entries in the parse vector table that GOTO
poi~ts to would contain 01 for the number of items that need to be parsed (in this
case the line number) followed by the vector to the Parse routine that parses the
syntax (in this case the "Parse line number" routine). The reason for doing this is to
shorten the amount of space taken up, because many commands share syntax, like

3

get first word
from Input buffer

Assume a
Word= l--"9! variable +

command ? oo Parse LET
yes,__ ______ --'

lookup
parse vector

Call next
vector

L-=,-/ any more
yes vectors ?

no

yes

Flowchart of
Parse Line

To Central Loop

GOSUB 30" and "GOTO 50". Instead of listing the vectors over and over in the
primary table, Coleco listed them once, and had the commands point to the
required type of syntax.

After the Parser finds the vectors to the command, it calls them in the order in
which they are listed. The parse vectors are then responsible for doing most of the
parsing. Many times these vectors are looking tor commas, equal signs, or words
like "at" or "then". These words, and other symbols used only after the commands,
are stored in the secondary word table at $0332. Since they are used by Parse
routines, they have the format: 1. token, 2. length of word's ASCII, 3. ASCII of word
or symbol. As before, when the Parser looked for the command in the primary word
table, the parse vectors look for symbols in the secondary word table. But if the

4

symbol does not match one in the table, an error is printed, and the Z80 returns to
the Central loop to get more input from the keyboard. There are some words, like
MID, SIN, or POS, called variable commands, that are not in this table. This is
probably due to the fact that they require some execution, while words like "at" or
commas are only for syntax and do not perform any other function.

As mentioned earlier, the Parser changes the line into a form called crunch
code. This code is important ii you want to look at execution routines, or if you want
to write a new command, because the execution routines use only this form of the
line you typed in on the keyboard. A line of crunch code consists of the following:
1. the number of bytes in the crunch code command, 2. the command's crunch
code, and 3. a o (zero) showing the end of the line. If the line had multiple
commands separated by colons, then each command is listed as if it were alone,
but with the zero following the last command (e.g. , "PRINT: PRINT: PRINT' would
be 1,7, 1,7, 1,7,0). The crunch code of the command always starts with the token of
the command. When you define variables without using LET, the LET token is put
in the buffer anyway. What follows the token varies with what you type in, but the
symbols in the secondary word table are also listed by their token. For example,
"COLOR= ... " would start out with: 1. number of bytes in line (depends on what the
COLOR equals), 2. $3A (token for COLOR), 3. AA (token for "="), 4. whatever it
equals (in crunch code).

Crunch Code Numbers
This brings us to how numbers are stored in crunch code. If the number is a

whole number, and is from o to 9, then it is the number + $80. Thus 7 becomes
$87. If the number is above $A and below $100, then it takes up two bytes: 1. $SA,
2. number in hex. Thus 100 becomes $SA, $64. The $SA and the $80 for the
integers are called number types. You can tell what kind of number any number in
crunch code is by looking at the number type. Numbers from $100 to $FFFF take
three bytes: 1. $88, 2. number in hex lo, hi. Thus 256 becomes $88, $00, $01 and
50000 becomes $88, $50, $C3. Negative numbers that fall into any of the above
formats are preceded by $A1 (token for"·"). Any number above $FFFF, in scientific
notation, or with a decimal point is stored as a floating point number and has a
number type of $92. Thus 1000000 becomes $92, $00, $00, $24, $74, $94.

Crunch Code Variables
Variables are stored in crunch code by .assigning a number to any variable

you type in. Variables you type first have smaller numbers than later variables, but
if you use a variable again later in the program, it still has the same number (e.g. , if
the number for variable "x" in line 50 is $20, then if "x" is used again, it still has $20
as its number). Although it would be logical that the first variable you use is
assigned the variable number of 1, it isn't, because some ($18) commands are
stored as variables. So the number of the first variable is $01 C, and the maximum
number is $3FF. The variable is stored in crunch code by adding $SC to the top
byte of the variable number (e.g. , $127 becomes $8D, $27). After the number is

5

stored, it enters any ASCII from the variable name other than the first two
characters (e.g. , the "ges" of "pages") in the form: 1. number of characters, 2.
ASCII of characters. Thus a variable "point" with a variable number of $01 C is
stored as: $8C, $1 C, $03, $69, $6E, $74. In addition to being stored in crunch
code·, variables are placed by the Parser in a variable table pointed to by $3EDF.
This table is used in execution, and is later explained more fully. String, integer, or
dimensioned variables are specified in the variable tables, and not in the crunch
code. For example, the crunch code for the line "atom (1 o, 4) = 3" is $OE, $01, $BC,
$1 D, $02, $6F, $6D, $87, $BA, $QA, $89, $84, $88, $AA, $83, $00. The
interpretation is as follows:

crunch code meaning
$OE
$01
$8C,$1D,$02,$6F,$6D
$B7

length of line in bytes
token for LET
"atom"
"("

$8A,$0A "10"
$89
$84
$B8
$AA
$83
$00

" "
'

"4"
")"
" " =
"3"
end of line

Other types of data that need storing are strings and DATA or REM data.
Strings are stored in the following form: 1. $91, 2. number of bytes in the string, 3.
ASCII of the string. Thus "hello" becomes $91, $05, $68, $65, $6C, $6C, $6F.
Things following REM or DATA are similarly stored: 1. $90, 2. number of bytes in
DATA, 3. ASCII of DATA. The Parse routine that handles REM and DATA has a
bug. For the fix of this DATA Bump Bug, see chapter 11. The following table shows
the code that indicates each type of data possible in a line with the length of bytes
that follows that type of data.

QQ.®.($)
0- 64
80-89
BA
88
8C-8F
90
91
92
A0-BD

meaning
primary word token
number from O to 9
number from $0A to $FF
number from $100 to $FFFF
variable
DATA or REM
string
floating point number
secondary word token

6

number of bytes
1 byte
1 byte
2 bytes
3 bytes
at least 3 bytes
at least 2 bytes
at least 2 bytes
6 bytes
1 byte

If you are confused about crunch code, there is a program in Appendix 1 that
allows you to experiment with it. Even if you are comfortable with crunch code, the
program lets you see the crunch code of any command, which helps when you are
tracing a command's execution.

Program tables
Once the Parser finishes parsing the line into crunch code, it returns to the

Central loop, where it either executes the command, if it is an immediate mode
command, or enters it into the program tables. Let us first look at a program line,
which is specified by having the first word of ASCII in the line be a number. The
Central loop, after calling $3609 to parse the line, calls $314A to enter the crunch
code for the line into the program tables, which store your program. The first table,
called the crunch code table, is pointed to by $3EE5, and is usually high up in
RAM. This is where the crunch code for the line you typed in is stored with all the
previous program lines of crunch code. The lines are in descending order, with
the first line you typed in being highest in memory. Note that these lines are not in
numeric order, but in the order that you typed them in. The crunch code in this
table is exactly like the code from the Parser, so it does not include the line number.
line numbers are stored in a table pointed to by $3ED9. The line numbers in this
table are in numeric order, and it is usually stored just beneath the crunch code
table. The entries have the form: 1. line number lo, hi, 2. address of that line's
crunch code in the crunch code table lo, hi. Thus the line numbers are stored in
one table, used for optimum speed in finding line numbers for GOTO or GOSUB,
and the crunch code for that line is stored in a separate table, as seen in the
following diagram.

line number

.address of c.c.

lin• l'IUn'lbfl"

lddn:s:s of c.c

r

I

r
I

14

'A
01

50
01
BA
CF

01 ·.av.am of som• s.ampl•
pro9r .am lin•s

7

04
07
91
01
47
00

03
;.,,:.,
AA
87
00

I-

I

I-
I-

• of bytes 1r1 lirie
token for PR INT

crunch cod~ for "G"

• of br~ t,;,s in line
token for COLOR
tokl:'n for =
crunch code for 7
'!'nd 0f 1inl!'

Command Execution
If the line typed in has no line number, then the line requires immediate

execution. In these cases, the Central loop calls $17E0, which later falls into
$182E, the main execution loop. These routines take the command's token from
crunch code put there by the Parser, and pointed to by the DE ZS0 register, uses it
as an offset to look up the execute routine vector from the table at $1917 and calls it
(e.g. , for GOTO, which has a token of 03, the loop would call the third vector in the
table). When the command is over, the ZS0 returns to the Central loop to read the
keyboard for another line of input. If the command is "RUN", the ZS0 jumps to a
loop at $17E0 which is the "Execution loop". This is called the Program mode
because it executes your program. This loop gets tokens from the crunch code
table, as pointed to by the line number table, and executes them until an error
occurs or it reaches the end of the line number table. When the program ends the
ZS0 returns to the Central loop to look for keyboard input. The flowchart for the
Execution loop is as follows:

get token

call vector

yes any colons?

no

yes
no

yes
no

increment to
next line

Flowchart of Execution loop

to Central
Loop

While executing a command or program, variables used in the command can
change by being assigned a new value or string (e.g. , LET a=6 or INPUT y$). This

8

is accomplished by changing certain tables: variable table, string space, or the
variable value table. The most important of these is the variable table, because it
points to the other two. When you create a new variable by typing it in, the Parser
makes an entry in this table for some of the variable's essential data. Each entry
has the following form: 1. variable type byte, 2. pointer to variable's string or value
lo, hi, 3. first two characters of the variable's name (03 if a character isn't present).
The type byte has various bits set according to the variable, as follows (a typical
numeric variable has a type byte of $01 or $02, strings have $21 or $22):

type byte bit #
7
6
5
4
3
2
1
0

meaning
variable command (e.g. , MID)
variable function (FN)
string variable ($)
integer variable (%)
dimensioned array
unused
two characters in the name
one character in name

The second and third bytes of the entry point to the definition of the variable
(string or number). If the variable is a string, then it points to the variable's string in
the string space. String space, pointed to by $3EF3 (beginning) and $3EEF (end),
has entries in the format: 1. pointer to variable in variable table, 2. number of
characters in string, 3. ASCII string. If the variable is a null string, the variable table
points to $3F52. If the variable is numeric, then the entry in the variable table
points to its value in the variable value table. All the numbers in this table, pointed
to by $3EED, are in floating point format. The fourth and fifth bytes of the entry store
the variable's ASCII according to bits 0 and 1 of the type byte. Values of integer
variables are stored in the variable table as two bytes. Dimensioned arrays are
stored in the value table in the format 1. number of dimensions, 2. depth for each
dimension lo, hi, 3. floating point number, pointer to string, or integer number tor
every entry of the array. This allows for string arrays as well as numeric ones. In
defined function variables, the pointer to the string or value points to the function
equation in crunch code.

For some strange reason, some commands that can be used in equations are
also stored as variables. I call them variable commands, and they take up the first
$1 B variable entries in the variable table. Instead of the pointer to the string or
value, there is a vector to the execution routine of the command. Furthermore, the
ASCII characters are replaced by the command's offset into the variable command
name table, which stores each command's ASCII characters in the format: 1.
number of letters in word, 2. word. This table is pointed to by $3EE1 and $3EE3.
The diagram on the following page shows how the variable tables point to each
other with some sample variable data.

9

conwand

variable

numeric

variable

string

variable

-

-

... _-

-
I

OF :-, -
I

n, I..J

I
,-~

,-D
:

The BASIC Stack

type

vector

o«set

Y1rl1ble command n■me table

_J 4
• of letters

ASCII of command

VarlNle value table

ASCII of name

type

address

ASCII of name

address in variable table

• of letters

ASCII of string

Dlqrant or some sample variables

n. pt. number

~~

The stack in BASIC, when executing a command, has two purposes in
addition to being a temporary place to save registers and addresses. It keeps track
of nested FOR-NEXT loops and GOSUB commands. When the FOR-NEXT data is
pushed to the stack by the FOR routine, IY is pointed to the end of the data, thus
indicating the current FOR-NEXT data section as the rest of the
stack continues. If IY was already pointing to another section (nested loops), then it
is also pushed with the new section, thus preserving it. When the loop is over, it
pops off the old IY and continues with that loop. The same theory applies to
GOSUB and the IX register. For the exact data pushed, see the FOR or GOSUB
commands.
The stack is also used when BASIC computes equations, for priority values (e.g. ,
2+3•5=17, not 25). Priority is understood by all of us, but how does the stack fit in?
Well, BASIC evaluates the equation by comparing the priority of terms as it goes
through the line from left to right. Lower priority terms are pushed to the stack to be
later popped off when the higher part of the equation is completed. In the example
2+3•5, it first looks at the "2+". Since this is the first term of the equation, nothing is
done, yet. It then looks at •3••. Since multiplication has priority over addition, the
"2+" is pushed onto the stack and the •3•• now is the current term. When it sees "5
end of equation", it calls the multiplication routine to compute 3•5, pops the "2+" off
the stack and adds that to the resulting product, thus getting 17. Variables and
commands in equations may seem complex, but they can always be replaced by a
single number to let the equation evaluation move on.

zao Registers in BASIC
While executing a command, some registers hold data that is used very often

10

and would slow down BASIC if it were stored in RAM. These registers are
"universal". That is, they are not used casually by one routine to store temporary
data They contain things needed by many routines. If a routine needs the register
to hold some temporary data, it pushes the old register to the stack, uses the
register for its own purpose, and then pops the original register, thus preserving it
for other routines. The table below shows each register with the data it holds.
Note that the DE register points to the Input Buffer, and not the crunch code, while
BASIC is parsing a line. DE is then set to the crunch code after the line is parsed.

register
DE
DE'
HL'
C'
B'
IX
IY

function
points to current address in crunch code
points to the start of the parsed line
points to the current line number
number of bytes left in crunch code line
status byte in BASIC
points to a Gosub section on the stack
points to a For-Next section on the stack

The status byte (B') is used as a flag register. The following table shows each
bit with its function:

Tape commands

B' bit#
7
6
5
4
3
2
1
0

function
trace (1 =on)
mode (1 =program)
For-Next loop started (1 =yes)
nobreak (1 =On)
clear variables (1 =yes)
clear subroutines or loops (1 =yes)
Onerr executing (1 =yes)
Onerr (1 =on)

You may have noticed that the primary word table does not include any tape
commands. Instead, tape commands are stored in their own section at the end of
BASIC. I don't know why this is, because it would be easier to include them as
primary words. BASIC executes them by doing the following: when you type in
the line, it goes to the Parser; this is normal. But when the Parser doesn't find the
tape word in the primary word table, assumes it is a variable and doesn't find an
equal sign, it calls a routine at $4DAC to see if it is a tape word. If not, it returns to
the Parser to print an error and then back to the Central loop. But if the tape
command exists, it calls the command's execution routine (found in the vector table
at $4F4F). The command is responsible for parsing the rest of the line and
executing it. It then returns to the Central loop.

Tape commands from a program are specified by using ctrl-d. When you print

1 1

a control-d, the routine at $4C0F sees it, and starts putting anything else printed
into the ctrl-d buffer at $4279. When a "return" character is received, it looks up the
word as before, and calls it, only this time the command returns to the Print routine
instead of the Central loop.

Important tables .
Scattered throughout BASIC are tables that would interest the programmer.

have mentioned many of them already, because they are an essential part of
BASIC and its functions. They are listed again below to refresh your memory, and
provide a lookup chart for the tables that you may use in your programs. The tape
and execution error tables store the ASCII of the errors that are printed on the
screen when something goes wrong. Parse errors are located in the Parse section,
but are not organized into one table. The data table stores many pointers, vectors
and buffers, and is fully described in chapter 7.

!.a!2!.e.
Primary word table (commands)
Tape word table
Variable command table (e.g. , COS)
Secondary word table (e.g. , THEN, ;)
Variable table
String space
Value table
Parse vector table
Line number table
Crunch code table
Tape errors
Execution errors
Data table

address
$0110
$4EAA
pointed to by $3EE1
$0332
pointed to by $3EDF
pointed to by $3EF3
pointed to by $3EED
$03AA
pointed to by $3ED9
pointed to by $3EE5
$5E3E
$0480
$3ED9

The following chapters give a detailed description of the routines in
SmartBASIC. I hope the above outline will be sufficient to introduce you to this
detail. Questions that arise should be answered by disassembling the routine and
following the actual assembly language of the routine, which is how I figured out
everything in this book. The operating system routines listed in volume 1 are also
important in understanding the disassembled output, since in/out and tape
routines use the OS in many cases.

12

Chapter 2: Zero Page

Zero page is devoted to interrupts. There are three kinds of interrupts for the
Z80 microprocessor: a regular interrupt which can be ignored or masked (INT), a
nonmaskable interrupt (NMI), and a bus request (BUSRQ). All of these interrupts
consist of signals sent from some external device to the appropriate pin of the Z80
CPU. When the Z80 receives a NMI signal, it pushes the program counter to the
stack and jumps to $66 in RAM. An INT is more complicated and can either cause
the Z80 to put out an in/out request and jump to $38, or perform an indirect jump to
an address formed from the I register and a number provided by the external
device. The bus request pin causes the ZBO to stop operations and not use the
bus until the signal is removed. The pin is used for direct memory access (OMA)
such as that by the master 6801 on the Adam.

On the Adam a non-maskable interrupt is sent 60 times per second from the
video chip to the Z80. ·11 is serviced by the routine at $66 (102), which switches
pointers to two tables in VRAM to create the blinking letters of the FLASH
command. This routine is called every 16. 7 ms and can cause problems with
bankswitching or exact timing requirements. The interrupts from the VDP can be
prevented by resetting bit 6 of register 1 of the VDP. The most interesting thing to
do with this FLASH routine ($66-$AB) is to change the counter that controls the
flash rate. The number at address 159 does this. It is normally 12, and poking it to
3 will cause Flash to definitely get your attention.

Eight memory locations at 0,8, 16, etc. are $C9, return from interrupt, which
presumably are in case of an INT interrupt, although I am not aware of any. All of
zero page except 102-171 is available space for your routines.

13

Chapter 3: Keywords

A series of tables are stored from $100 to $5CB, including the Primary word
table, Secondary word table, Error and Parse tables. The most important of these
is the Primary word table at $110, the storage area for the ASCII of the non-tape
command keywords (e.g., GOTO, RUN, PRINT). It is used during parsing, when
each primary word is compared to the words in the Input buffer. Changing the
ASCII of a command in this table allows you to customize commands or keep out
nosy people (e.g., changing the ASCII of LIST to HAHA). Printing out this area with
Printmem (vol. 1) helps with this task. Its token or crunch code is together with the
ASCII. This number is put in the Crunch code buffer by the Parser to save space
and speed up execution. The token is used also as an offset into the Command
vector table at $1917, which contains the vectors to the execution routine of every
command. The Parse vector table at $3AA points to the routines to do this for
each command, by having the command in the Primary word table point to the
desired group of vectors. The relationship between the Primary word table, the
Parse vector table and the Command vector table is shown in the following
diagram of a sample command (FOR).

Execute table

Primary word table ---------~rl i_~ h vector to execution

BF
03

46
4F
52

token for FOR · .]
-pointer to parse vectors

of letters in word
able Parse vector t

ASCII of word 04
BF
3A

3E
1B

F5
3A
.

Diagram of a sample primary word

14

--_J

]

7

_J

of parse vectors

parse vector #1

parse vector #2

parse vector #3

parse vector #4

Another table, similar to the Primary word table, is the Secondary word table at
$332. It contains the ASCII of most of the symbols that could follow a primary word
(e.g.,=, THEN, :). They, too, are translated by the Parser into their tokens and put
in the Crunch code buffer with the rest of the line.

Ending this section is the ASCII table of execution errors. Changing this table
allows your errors to look like anything you want, though, like the Primary word
table, the new error should be as long as the one it is replacing. Note that these
errors don't include the Parser or Tape errors.

$0100-0102 (256-258) Start Vector
The tape loads JP $3E9D, the cold start address, at $100 but the cold start routine
at $4061 changes the address at $101-102 to $3EA3 which is the Central loop.

$0106-01 OF (262-271) Numbers
The numbers 10000, 1000, 100, 10, 1, are in integer (two byte) format.

$0110-0331 (272-817) Primary word table
This table of BASIC words is in the format: token, pointer to parse vectors, number
of letters, word. The token points to the execution address in a table at $1917. The
following table gives this information in more convenient form.

Token($) ltlQ[Q
01
02 GOSUB
03 GOTO
04 INPUT
05 LET
06 NEXT
07 PRINT
08 READ
09 REM
OA FOR

OB IF
oc DATA
OD DIM
OE ON
OF ONERR
10 STOP
11 RETURN
12 END
13 DEF

ExeQu!e($)
1867
20EB
2096
22FD
1867
226B
1EAE
251B
20E3
216D

1 E19
20E3
1B1E
20BD
1FB2
18EA
211 D
179F
2034

15

E~eQu!e(dec)
6247
8427
8342
8957
6247
8811
7854
9499
11747
8557

7705
8419
6942
8381
8114
6378
8477
6047
8244

Parse($)
3AAC
3D8C
3D8C
3CB7
3AAC
3CCF
3CDC
3CD6
3DC9
3A8F 3E5B
3A1 B 3AF5
3A63 3ABB
3DC6
3CD6
3A1B 3B69
3E77 3D8C

3B15

~

14 CLEAR 1FCD 8141
15 RESUME 2079 8313
16 NEW 18D4 6356
17 POP 212D 8493
18 RUN 180F 6159 3880
19 LIST 1CEF 7407 3888
1A TRACE 18C0 6336
18 NOTRACE 18C5 6341
1C DEL 1D83 7555 388F
1D CALL 273A 10042 3A18
1E CONT 18F3 6387
1F CLRERR 1FAD 8109
20 GET 24A2 9378 3C04
21 POKE 2778 10104 3A18 3E43

3A18
22 RESTORE 250A 9482
23 HOME 2852 11090
24 DRAW 2C5E 11358 3A18 3A80
25 XDRAW 2C94 11412 3A18 3A80
26 FLASH 282A 11050
27 INVERSE 282F 11055
28 NORMAL 2834 11060
29 TEXT 2839 11065
2A GR 283E 11070
28 HGR 2843 11075
2C HGR2 2848 11080
2D HUN 28A2 11170 3A18 3E43

3A18 3E69
3A18

2E VLIN 28D3 11219 3A18 3E43
3A18 3E69
3A18

2F HPLOT 2CDF 11487 3AFE
30 PLOT 2883 11139 3A18 3E43

3A18
31 HTA8 2C38 11320 3A18
32 VTA8 2C42 11330 3A18
33 SHLOAD 284D 11085
34 RECALL 2DF4 11764 3C04
35 STORE 2DEC 11756 3C04
36 WAIT 278E 10126 3A18 3E43

3A18 3A79
37 SPEED 2A50 10832 3E36 3A18
38 ROT 2CC3 11459 3E36 3A18

16

~

39 SCALE 2CD1 11473 3E36 3A1B
3A COLOR 2858 11099 3E36 3A1B
38 HCOLOR 286F 11119 3E36 3A1B
3C IN 2F34 12084 3E4E 3A1B
3D PR 2F1A 12058 3E4E 3A1B
3E HIMEM 2802 11010 3E27 3A1B
3F LOMEM 2A76 10870 3E27 3A1B
40 BREAK 18CA 6346
41 NOBREAK 18CF 6351
07 ? 1EAE 7854 3CDC
42 & 27B4 10164 3DC9

$0332-03A9 (818-937) Secondary word table
These words occur following other words and are always found by a Parse routine.
The table is simpler than the previous one, and is arranged: token, number of
letters, word.

Token ':!:JSJISj Ioke□ ~ Token Word
AO + AA = B4 TO
A1 AB AND B5
A2 • AC OR BS #
A3 I AD NOT B7 (
A4 A AE GOTO 88)
AS < AF GOSUB 89
AS > BO STEP BA
A7 <= 81 AT BB =<

AB >= 82 THEN BC =>
A9 <> 83 THEN BD ><

$03AA-041F (938-1055) Parse vector table
These vectors are listed in the table above, along with the commands that point to
them. The format is: number of vectors, vectors. Each vector points to a Parse
routine that parses a portion of the command's syntax.

$0420-0478 (1056-1144) Copywrite
This space contains the message printed when you boot BASIC. Since it is not
used after the boot, you can use it to store your own data.

$0479-047F (1145-1151)], :, CR
Symbols used in print statements. To change the BASIC prompt from a right

17

~

bracket (]) to something else, Poke 1145, X, where Xis the ASCII of the new
symbol.

$0480-05B7 (1152-1463) Error Message Table
Command errors that can occur during RUN or execution are gathered here in the
format: number of letters, message. Errors that occur during parsing are scattered
throughout the Parse routines, and tape errors are in the tape section.

$05B8-0SCB (1464-1483) Offset Table for Error Messages
This list of one byte numbers is used to find messages in the previous table. For
example, the third message is $2A into the table.

18

Chapter 4: Math Routines

The math routines are interesting to disassemble just to see how they work.
The information given here should be enough to make the disassembler output
interpretable. The calculations are made on numbers in the floating point
accumulators (FPA1 and FPA2), which are in floating point format. This format is
described in vol. 1, and consists of 4 mantissa bytes and one exponent byte. To
experiment with floating point numbers use the program in Appendix 1, which
prints out floating point numbers from decimal input (e.g., 5= 00 00 00 20 83). The
program enters a number and then PEEKs the variable value table to print out the
floating point representation .

. Each function (e.g., SIN, LOG, etc.) is calculated as a power series (e.g.,
a+bx+cx'2+dx'3 ...). Three general power series routines are at $103C to $1104,
which calculate series of odd powers, even powers or all powers, respectively. The
number of terms and the constants used in the calculations are specified by the HL
register, which points to a table of the number of terms, followed by the constants
in floating point format. Such tables are at $11 CC to $1257. The constants are not
exactly as predicted from the classical infinite series coefficients given in the
comments, for reasons which I assume come from the fact that a rather small
number of terms are actually used. This is a fairly esoteric subject which I have not
found described in engineering or computer books, and may be passed from one
generation of programmers to the next by reverse engineering.

$05CD-05DA (1485-1498) Numbers (1-F)
This unused area is filled with the numbers 1 to $OF.

$05DC-05EE (1500-1518) Load HL with number from crunch code.
Calls $1733 to evaluate equation and puts number only (not string) in HL. It prints
an error if the number is greater than 255 ($FF) or if it is a string.

$05EF-0610 (1519-1552) Load BC with number from crunch code.
Used by GOTO, etc., to get line numbers from code line. It is like the routine above,
only it doesn't call $1733 to get the number. It only accepts numbers in the format
$80 to $88, which is from a to $FFFF (see chapter 1).

$0611-0620 (1553-1568) Print FPA1 in decimal.
Calls $0CBC to change FPA1 into an ASCII string, and then calls $2F4E to print it
from the buffer at $3F76.

19

AM7H

$0621· (1569) Add FPA1 with (HL).
HL must point to a floating point number. The result is in FPA1. It loads FPA2 with
HL's number, and falls through to $062F to add them.

$0627- (1575) Subtract FPA2 from FPA1. Result in FPA1.
XORs the top byte of FPA2 (3F2E) with $80 and falls through to the add routine.

$062F-0727 (1583-1831) Add FPA1 and FPA2. Result in FPA1.

$0728-073A (1832-1850) Load FPA2 to FPA1. HL lost.

$073B-0752 (1851-1874) Find sign.
Used by multiply and divide routines to prepare the FPAs for calculations. The sign
of the result is loaded to 3F17, and top bits of FPAs are set.

$0753-075C (1875-1884) Multiply FPA1'2.
It increments the exponent of FPA 1 to multiply it by 2, checking for an overflow
error.

$075D- (1885) Multiply (HL)'FPA1
HL must point to a floating point number. The result is in FPA1. Calls $1117 to
load the number to FPA2 and falls through to the next routine.

$0760-07E1 (1888-2017) Multiply FPA1'FPA2
A shift and add algorithm is used, but it shifts the running sum right instead of
shifting the number left. The result is left in FPA1.

$07E2-08E3 (2018-2275) Divide FPA1 by FPA2
Similar to the multiply routine, only it shifts and subtracts. The result is left in FPA1.

$08E4-08EC (2276-2284) ABS
Resets top bit of FPA 1 to 0, making the accumulator positive. HL is lost.

$08ED-0915 (2285-2325) SGN
FPA1 =0 if it (i.e., FPA1) is zero, 1 if it is positive, and -1 if it is negative. A and HL
are lost.

$0916-0931 (2326-2353) Toggle FPA1 or FPA2.
FPA2 is toggled if the carry flag is set. Otherwise, FPA1 is toggled. To toggle
means to set to zero, if it is not zero, and to set to one, if it is zero.

$0932-0966 (2354-2406) Load FPA1 to HL in integer format.

20

MA1H

$0967-09B7 (2407-2487) Load HL to FPA1 or FPA2.
Integer to floating point conversion. FPA2 is used, if the carry flag is set.

$09B8-0A0F (2488-2575) Compare FPA1 with FPA2.
Carry flag is set, if FPA1>FPA2.

$0A10-0B3A (2576-2874) Convert number from ASCII to FPA1.
Number in buffer (DE) is converted from scientific format ASCII (e.g., 3.5E+7) to a
floating point number in FPA1. All registers are saved.

$0B3B-0CBB (2875-3259) Table of powers of ten in FP format.
All powers of ten from 1 E-38 to 1 E+38 are stored in floating point format.

$0CBC-ODFB (3260-3579) Convert FPA1 to decimal ASCII.
The resulting string is at $3F77 and the length of the string is at $3F76.

$0DFC-0E13 (3580-3603) Scale FPA1
If FPA1>10, multiply it by 0.1.

$0E14-0E5D (3604-3677) LOG
Calculates the natural log (In) of FPA 1 and puts the result in FPA 1. The routine is
based on the equation In x = 2 [(x-1 /x+ 1) + 1/3 (x-1 /x+ 1)'3 + 1 /5 (x-1 /x+ 1)'5 ...]
when X<1. The number is scaled and the In calculated by the power series
calculator #1 at $103C, using the four constants at $1243.

$0E5E-OE6F (3678-3695) SQR
Calculates the square root of FPA1, with the result in FPA1. Calculated from: SOR
(x) = e•1 /2 In x.

$0E70- (3696) Raise to power(•).
Uses the equation: x•y = e•y In x. x = FPA1 and y = FPA2. The answer is in
FPA1.

$0EE8-0F47 (3816-3911) EXP
Exp (x) = e•x. x and answer are in FPA1. Calculated, after scaling, from e•-x= 1 - x
+ (x•2)/2! - (x•3)/3! ...

$0F48• (3912) TAN
Angle and answer in FPA 1. Calculated from Tan= Sin/Cos. Calls routines below.

$0F6A- (3946) COS
Calculated from Cos x = Sin (x + ,r/2).

21

M<\1H

$0F72•103B (3954-4155) SIN
This one does all the work. The equation used is Sin x = x • (x'3)/3! + (x'5)/5! •
(x'7)/7I ... Uses power series calculator #2 at $1 0AE, and the five constants at
$1229.

$103C· (4156) Power Series Calculator #1
FPA1 = ((x•2•co + c1)"x'2 + c2)"x'2 ... cn)"x. HL is the address of number of terms
followed by constants. Input xis in FPA1.

$1054- (4180) ATN
The equation used is ATN(x) = •(x'3)/3 + (x'5)/5 • (x'7)/7 + ... where 0<X<1. Uses
power series calculator #1 and six constants at $11 CC.

$10AE• (4270) Power Serles Calculator #2
FPA1 = ((x•2•co + c1)0 x•2 + c2)"x'2 + ... en. HL is the address of number of terms
followed by constants. Input xis in FPA1.

$10B6· (4278) Power Serles Calculator #3
FPA1 = ((x•co + c1)0 x + c2) 0 x + ... en. HL is the address of number of terms followed
by constan1s. Input xis in FPA1.

$1104-1116 (4356-4374) Load FPA1 to FPA2.
Similar to the routine at $0728, only it moves FPA1 to FPA2.

$1117-111 F (4375-4383) Load (HL) to FPA2.
HL must point to a floating point number.

$1120-112B (4384-4395) Load FPA 1 with 1.
This and the next four routines destroy DE and HL It moves the data from $0BF9 to
FPA1.

$112C-113A (4396-4410) Push FPA1 to Stack.
On exiting, the stack contains: mantissa byte 1, exponent, mantissa 3, mantissa 2,
0, mantissa 4.

$113B-1149 (4411-4425) Pop FPA1 from Stack.

$114A-1158 (4426-4440) Push FPA2 to Stack.

$1159-1167 (4441-4455) Pop FPA2 from Stack.

$1168-117E (4456-4478)-127 < FPA1 < 127?
The Carry flag is reset, if FPA1 is between •127 and 127. Otherwise it is set.

22

M4TH

$117F•1191 (4479-4497) Temp ABS
Makes FPA1 positive, if it isn't, and sets the return address to $090E, which sets the
sign bit to its original value.

Some Floating Point Constants:

$1192-1196 (4498-4502) 0.693147180 = In 2

$1197-1198 (4503-4507) 1.44269504 = 1/ln 2

$119C-11 AO (4508-4512) 1.57079632 = rr/2

$11A1-11A5 (4513-4517) 0.636619772 = 2/tc

$11A6-11AA (4518-4522) 0.785398164 = rr/4

$11AB-11AF (4523-4527) 0.414213562 = SQR (2)- 1

$1180-1184 (4528-4532) 2.41421356 = SQR (2) + 1

$1185-1189 (4533-4537) -0.5 =-1/2

$11BA-11BE (4538-4542) -1.41421356 = • SQR (2)

$11BF-11C3 (4543-4547) 0.707106781 = 1/SQR (2)

$11 C4-11 CB (4548-4555) Four Integer constants.

Groups of power series coefficients.
These coefficients are slightly different from the equations given because of finite
series approximations.

$11 CC-11 EA (4556-4586) ATN coefficients.
-0.060346883 = -1/11 (approximately)
0.105734403 = 1/9

-0.142400777 = -1/7
0.199982167 = 1/5

-0.333333076 = -1/3
0.999999999 = 1

23

$11 EB-1213 (4587-4627) EXP Coefficients.
2.06667101E-5 = 1/81 (approximately)
1.46290047E-4 = 1/7!
1.3386897E-3 = 1 /6!
9.61627016E-3 = 1/51
0.0555044141 = 1/4!
0.240226488 = 1/31
0.693147181 = 1/2!
1

$1214-1228 (4628-4648) SIN (routine #1) coefficients.
-4.63313261 E-3
0.0796879998

·0.645963956
1.57079632

$1229-1242 (4649-4674) SIN (routine #2) coefficients.
8.95410543E-4

-0.0208554615
0.253668615

-1.23370049
1

$1243-1257 (4675-4695) LOG coefficients.
0.434255942
0.576584541
0.961800759
2.88539007

$1258-1284 (4696-4788) RND
Puts a random number into FPA 1. Seed is at $3F40 (16192), two bytes.

$1285-12E2 (4789-4834) Push FPA1 to Stack with String Check.
If FPA 1 points to a string, indicated by $3F21 = 1, the stack pointer is placed at
memory pointed to by $3F22. (In equation evaluation, FPA 1 can be used as a string
pointer.)

$12E3-1304 (4835-4868) Pop FPA1 from Stack with String Check.
If FPA 1 points to a string ($3F21 = 1) , the number $3F22 is loaded to the location
pointed to by $3F22.

24

Mil.TH

$1305-1322 (4869-4898) Load FPA1 to FPA2wlth String Check.
If FPA 1 points to a string ($3F21 = 1), the number $3F2B is loaded to the location
pointed to by $3F2B.

$1323-1340 (4899-4928) Load FPA2 to FPA1 with String Check.
If string, "$3F22" is loaded to ($3F22), as above.

Equation Evaluation Routines $1341-1756.
The following section is used when a command wants to compute an equation in
crunch code. The main routine is at $1733, which calls all the other routines. Each
routine performs a function (e.g., get an integer from Oto 9. or call the execution
routine of a variable command).

$1341- (4929) Get Number from Crunch Code. part 2
A is the number type. This routine calculates the vector of the routine to move the
number from crunch code to FPAt or 2, depending on entry point for part 1 at $16CD
or $16E5.

$1363-1375 (4963-4981) Offset Table for number type.
Used by routine above.

$1376 (4982) Get 0-9 integer.
Loads the number from crunch code into either FPAt or FPA2, depending on whether
the Carry bit is set or not

$1383 (4995) Get $QA-FF integer.
Uke the routine above.

$1390 (5008) Get $100-FFFF integer.
Like the routine above.

$139F (5023) Load variable to FPA1.
Calls $199F to see what kind of variable it is, and jumps to the routine according to the
table below.

$13A7-13B0 (5031-5040) Table of variable routine vectors.
Variable tyge Routine address
FP $13C3
% $13D6
$ $13E7
FN $140F
Command $140F

25

$13B1•13B6 (5041-5046) Load variable to FPA2.
Similar to the routine at $139F.

$13B7-13C2 (5047-5058) Table of get routine addresses.
The same as table at $13A7. except FN and Command= $1415.

$13C3-13D5 (5059-5077) Load FP variable from (BC) to (HL).
Moves the variable in floating point format from address pointed to by the BC registers
to that pointed to by the HL registers.

$13D6-13E6 (5078-5094) Load Int variable from (BC) to (HL).

$13E7-140E (5095-5134) Load String from (BC) to (HL).

$140F-1414 (5135-5140) Execute Variable Command.
This and the next routine act on commands that are in the string variable table: SPC.
TAB, ... VPOS. The result is in FPA1.

$1415-142E (5141-5166) Execute Variable Command.
The result is in FPA2.

$142F-14C9 (5167-5321) Variable Command interpreter
Does work for previous two routines. It calls the vector of the variable command found
in the variable table and checks for errors.

$14CA-14FD (5322-5373) Move string from crunch code to (FPA1).
Copies a string from current position in crunch code to String space pointed to by
FPA1. Entry at $14D0 uses FPA2 instead.

$14FE-151E (5374-5406) Load FP number from (DE) to FPA1.
DE points to the crunch code. Entry point at $1504 for FPA2.

$151F-1528 (5407-5416) Move string from (HL) to (DE).
The first byte is length of string.

$1529-155B (5417-5467) Add(+)
This and the next four routines call the appropriate routine, in this case $062F, POP DE
and BC, XOR A, and RET. If the variables are strings, this routine concatenates them.

$155C (5468) Subtract (calls $0627).

$1563 (5475) Multiply (calls $0760).

26

$156A (5482) Divide (calls $07E2).

$1571 (5489) EXP (calls $0E70).

M47H

$1578-1603 (5496-5635) <,>,AND, OR,=,<>,<=,>=.
Executes command on FPA1 and 2, or strings pointed to by them. If true, FPA1 is set
to 1. If false, FPA1 is reset to zero, i.e., $3F26 = o.

$1604-1615 (5636-5653) Compare strings (FPA1) and (FPA2).
Z flag set, if equal.

$1616-1648 (5654-5704) Executes(,-, NOT, for FPA1.

$1649-167F (5705-5759) Executes(,-, NOT, for FPA2.

$1680-16A4 (5760-5796) Check for math symbol in crunch code.
Uses next table to get order of op and address of routine. It points BC to the current op
in the table. If the symbol is not a math symbol, BC points to $16CC (end of line).

$16A5-16CC (5797-5836) Table of math symbol routines.
Format: order of operation, address low.high.

Symbol l2!Qfil addr~••
A o $1571
• 4 $1563
I 4 $156A
+ 5 $1529

5 $155C
< 6 $1597
> 6 $15A5
=< 6 $15B5
=> 6 $15C5
<> 6 $15D3
= 6 $15F1
AND 7 $1578
OR 8 $1589
end of equation FF

$16CD-16E4 (5837-5861) Load FPA1 from crunch code, part 1.
Finds number type and calls routine at $1341.

$16E5-16FC (5862-5884) Load FPA2 from crunch code, part 1.
Finds number type from crunch code and calls routine at $1341.

27

AM.TH

$16FD-1732 (5885-5938) Equation Evaluation
During RUN or an immediate command's execution. Coming in FPA 1 = first
number and BC points to math operation. This routine gets the next number in
FPA2 and the next operation (op), which together are called a set. If the second op
has a higher priority, it pushes the first set to the stack, moves FPA2 to 1, puts
second op in BC, and calls itself. This continues until the end of the equation. In
this way the math operations are done in order of decreasing priority. The
following flowchart shows how equations are evaluated by BASIC during
execution. See chapter 1 for more details.

get cur. set

.,
get next set return

• •
end of equ. t yes execute op

no • .,,
cur.op.>~ any sets ,
next op. ? yes on stack ?1 oo

•no •yes

push cur. set make next set
"'cur. set

• • make cur. set pop cur. set
,. next set

•
Flowchart of Equation Evaluation

$1733-1756 (5939-5974) Get Equation from crunch code.
Gets one number and operation from crunch code and calls $16FD.

28

Chapter 5: BASIC Commands

This section of BASIC is where most of the action occurs. It can be considered
the "brain" of BASIC, because it does important tasks like setting variables to a
value or string, keeping IF ... THEN statements straight, interpreting variable
commands or gathering information from crunch code for graphics commands. It is
needed after the Parser has translated the input and the line requires execution.
Each command has a routine that does only what that command is supposed to do.
These routines are vectored through a table at $1917, which stores them in the
order of each command's token. Changing the vector of a command allows you to
change what the command does, and is therefore helpful in adding new
commands.

By using the token of a command as an offset into the Command vector table
at $1917, the Execution loop at $182E looks up the address for the next immediate
or program command in the crunch code, and calls it to execute the command.
This loop repeats endlessly if BASIC is in the program mode (RUN), reading and
executing tokens from the program's Crunch code table. If BASIC is in the
immediate mode, then the loop only looks up and executes the one command in
the Crunch code buffer. If this command is RUN, then it enters the program mode,
and starts executing the program in the Crunch code table.

After the Execution loop calls the command's routine, the command is
responsible for getting needed data from the crunch code (e.g., the 1 O in GOTO
10). Other routines like "Get one number" ($05DC) are called by the command to
do this. It also needs to update the registers that point to or contain data needed by
other routines. They must contain the same information exiting as when they
entered. Pushing and then popping them off the stack help in keeping them intact.
These registers are: DE, pointing to the current address in crunch code; HL',
pointing to the current address in the Line number table; C', the number of bytes left
in the line of crunch code; B', the status byte of BASIC; IX and IY, the pointers to the
GOSUB and FOR ... NEXT data on the stack. Remembering to keep these registers
intact and up to date during the command's execution is important, because the
Execution loop and other commands need them.

$1757-1769 (5975-5993) Stack setup
IX, IY, and SP= $D380, the top of the stack which extends down to $D1 FF. BC and
the top to the stack are loaded with $1 EDC (Print error). There is only one stack,
but the index registers of the Z80 are used to keep track of locations on the stack
where return information is kept for Gosub (IX) and For-Next (IY).

29

COMMAND ROUTINES

$176A-1nF (5994-6015) Find first line number address.
Called at the beginning of RUN. It points DE to crunch code line. HL' points to the
second line number. C' is the length of the crunch code line.

$1780-179E (6016-6046) Find next line number address.
In: HL' is the address of the current line number. On exit HL' points to the next line
number, and DE points to the next crunch code line of length C'.

$179F-17B4 (6047-6068) END
Saves pointers for possible CONT, (DE at $3EFA and HL' at $3EFC). It then
returns to the Central loop at $3EA6.

$17B5-17DF (6069-6111) TRACE routine.
It prints"#", line number, space if bit 7 of B' is set. Returns to the Central loop if
BASIC is in the immediate mode. Otherwise it gets the address of the next line
number.

$17E0-180C (6112-6156) Execute command
Checks mode, does restore, jumps to Execute loop ($182E)c

$180F-182D (6159-6189) RUN
Clears stack, gets first line number or immediate number (RUN 30) address, and
falls through to next routine.

$182E-1866 (6190-6246) Execute loop
Loops endlessly until control-C or S is pushed or program ends. Loads (DE) to A,
gets command address from table at $1917 and calls it. Upon return it checks for
Trace or Break, and loops again. The Trace routine called at $17B5 also checks
for the immediate mode, and jumps to the Central loop, thus exiting the Execution
loop.

$1867-18BF (6247-6335) LET
This routine is called even if LET is not written (e.g., a=7, or LET a=7). It checks
variable type, calls get-equation ($1733), sets variable to what follows equal sign,
and checks for errors.

$18C0-18C4 (6336-6340) TRACE
Sets bit 7 of B' (to one).

$18C5-18C9 (6341-6345) NOTRACE
Resets bit 7 of B' (to zero).

30

COMMAND ROUTINES

$18CA-18CE (6346-6350) BREAK
Resets bit 4 of B' (to zero).

$18CF-18D3 (6351-6355) NOBREAK
Sets bit 4 of B' (to one).

$18D4-18E9 (6356-63n) NEW
Resets stack, clears variables, pointers, jumps to the Central loop at $3EA3.

$18EA-18F2 (6378-6386) STOP
Prints "BREAK IN (line number)" and jumps to Central loop at $3EA3.

$18F3-1916 (6387-6422) CONT
Loads DE' and DE with (3EFA), HL' with (3FFC), C' with (DE), and jumps to
Execute loop at $182E. If the Temp pointers (3EFA) and (3FFC) are zero, "Can't
Continue" is printed and it jumps to the Central loop at $3EA3.

$1917-199A (6423-6554) Command vector table
Two byte vectors of each command are stored here in order of token values. These
addresses are listed in the command list in chapter 3. Each vector points to the
execution routine of the command. Changing commands and vectors lets you
change the function of a command because you can create a new command, even
though you lose an old one.

$199B-1B1D (6555-6941) Get variable type
The variable is in crunch code at (DE). A is loaded with the type number and BC
points to the number in the Variable table. The Z80 then jumps to an address in a
table which follows the call statement that called this routine.

Variable Type# JP addre~~
FP $00 1st
% $10 2nd
$ $20 3rd
math command $80 5th
DefFN $CO 4th
Dim array $08

The variable type number is the number above plus 1 or 2 depending on whether
the name has one (1)or more letters (2).

$1B1E-1C04 (6942-7172) DIM
Sets up definition of array in the Variable value table. For example, DIM A(12,44,7)

31

COMMAND ROUTINES

has three dimensions and the first dimension has twelve elements. The format of
the definition is as follows: number of dimensions, number of elements in
dimension 1 (two bytes, max $7FFF), number of elements in dimension 2, etc.,
followed by the actual numbers in the array. To begin these are zeros for numbers
and $3F52 for strings, which is the address of a null string. A sample array is
shown in the following diagram.

Variable value table S I tr no st ac e

number of dimensions

dimension #1

dimension #2

string pointer for (0,0)

. .

CB
01

EF
CD

68
69

Diagram of a sample string array

$189A-1888 (7066-7096) Multiply HL x DE
Part of DIM. The result is in HL Carry flag is set on overflow.

$1C05-1C5F (7173-7263) Check DATA length

I

~

w

I

pointer to variable

of letters in string
ASCII of string ("G")

pointer to variable

of letters in string

ASCII of string ("hi")

Error if number of commas is greater than 256. On retum C = number of commas
+1.

$1C60-1C82 (7264-7298) Make string definition.
In A= string length, HL = address of variable name. Out (3EEF) = end of String
space and HL = start of String space.

$1C83-1C8E (7299-7310) Check stack
If stack goes below $D1 FF "stack overflow" is printed.

$1C8F-1C8C (7311-7356) Check String space
If table is too long (HL + ($3EEF) >$FFFF), it calls FRE ($27E1) to remove strings
that are not pointed to by the Variable table (garbage collection). If the table is still
too long, "Out of memory" is printed.

32

COMMAND ROUTINES

$1CBD-1CDA (7357-7386) Print program.
Used by LIST. Starts at current line number and prints to last line.

$1CDB-1D82 (7387-7554) LIST
Checks for line number,"-", or",". Actual print routine is at $3493. Finds words
from tokens in crunch code.

$1D83-1E18 (7555-7704) DEL
Checks text following DEL and calls $31 EB to delete a line. If there is more than
one line, it calls $31 F2 . It jumps to Central loop ($3EA3) when done.

$1E19-1E38 (7705-7739) IF
Calls $1733 to evaluate the condition following the 'IP. If it is true (A;,0), it returns if
"THEN" is found to continue the Execute loop. If the THEN is not there, GOTO is
assumed, and the routine jumps to $2096. If the condition is false (A=0), it calls
$1780 to drop down to the next line number.

$1 E3C-1 EDB (7740-7899) PRINT
Calls $1733 to get the numbers or strings for printing. It loops until the line ends,
checking for"," or";".

$1EDC-1FAC (7900-8109) Print command errors
This is jumped to by any command when an error is detected. It prints the
following: (return) "?" (error) "Error "(and "In line#" if in program mode). If bit o
of B' is set (onerr), then it "GOTO"s to the line number at $3EFE. The following
addresses print the corresponding errors:

address
$1EEB
$1EEE
$1EF1
$1EF4
$1EF7
$1EFA
$1EFD
$1F00
$1F03
$1F06
$1F09
$1F0C
$1F0E

33

ASCII string of error
Illegal Mode
Divide By Zero
Overflow
Redimensioned Array
Out Of Memory
Out Of Data
Formula Too Complex
Illegal Quantity
Type Mismatch
Incorrect Function Usage
String Too Long
Syntax
error code in A

COMMAND ROUTINES

. $1FAD-1FB1 (8110-8113) CLRERR
Clears an onerr command by resetting bit 0 of B' to 0.

$1FB2-1FCC (8114-8140) ONERR
Sets bit 0 of B' and puts the line number to goto at $3EFE.

$1FCD-2033 (8141-8243) CLEAR
Resets pointers so that all variables are set to 0 or null strings.

$2034-2078 (8244-8312) DEF
Sets the variable to a function variable, and points it to the function in crunch code.

$2079-2095 (8313-8341) RESUME
Checks for mode or syntax, and restores old pointers ($3EFC)=HL' and
($3EFA)=DE to continue execution.

$2096-20BC (8342-8380) GOTO
Gets a line number from crunch code and calls $30F0 to make sure it exists. Line
pointers are then set to that line number. GOTO is very useful in the immediate
mode, because, unlike RUN, it does not reset variables. For possible changes to
GOTO, see chapt. 11.

$20BD-20E2 (8381-8418) ON
If the offset number in the crunch code is o, the line is skipped over. Otherwise DE
is set to the correct line number entry and continues at GOTO or GOSUB.

$20E3-20EA (8419-8426) REM or DATA
DE is incremented so that it points to the next line in the crunch code.

$20EB-211C (8427-8476) GOSUB
Checks stack and saves the current position in the program by pushing IY, IX, HL',
DE, and $2122 onto the stack. IX is adjusted so that it points to the current GOSUB
entry on the stack. It then enters the program mode and continues execution at the
given line number. The $2122 entry is for the RETURN routine.

$211D-212C (8477-8492) RETURN
Pops the old pointers saved by GOSUB off the stack in the order: DE, HL', IX, and
IY. It uses the $2122 entry to allow the machine language return command to
continue execution for the BASIC RETURN command. Changing the $2122 to
another address allows the RETURN routine to be vectored to the routine you want.
Execution continues at the new line number saved on the stack.

34

COMMAND ROUTINES

$212D-2143 (8493-8515) POP
Pops off the GOSUB pointers pointed to by IX. This is like RETURN, but DE is not
changed, so execution continues with the next command after POP.

$2144-216C (8516-8556) ON GOSUB
This is a continuation of ON that executes a GOSUB instead of a GOTO.

$216D-2230 (8557-8752) FOR
Gets the necessary data from the crunch code and pushes it to the stack in the
following order: IX, IY, address of variable, final loop number (in floating point),
STEP number in floating point (default is 1), HL', DE, $2231. IY is then updated to
point to the new FOR-NEXT entry on the stack. The entry $2231 is for the NEXT
routine. Changing this address allows the NEXT routine to be vectored to another
routine.

$2231-22FC (8753-8956) NEXT
Actual entry point is at $226B, but it starts at $2231. Updates the data on the stack
pushed by FOR. If the loop is over, the data is popped off, and IY is set to the next
FOR-NEXT loop on the stack. Leaving the variable off (e.g., NEXT instead of NEXT
x) increases the speed of the loop.

$22FD-24A1 (8957-9377) INPUT
INPUT prints out any message or question, and then scans the keyboard until the
return key is pressed. Multiple variables of string or numeric contents can be
defined by using commas between them. "?Extra Ignored" or "?Reenter" is printed
In case of errors.

$24A2-2509 (9378-9481) GET
Calls Input at $2F69 to get one character from the keyboard or other device. This
character is then assigned to the desired string or numeric variable.

$250A-251 A (9482-9498) RESTORE
Resets all the DATA pointers ($3EF7·9) to 0.

$251 B-2702 (9499-9986) READ
Uses the DATA pointers at $3EF7-9 to get the numeric or string variable from
crunch code. If more than one variable is present, it loops until all of them are read.

$2703-2739 (9987-10041) Get memory address
Calls $1733 to get an integer from crunch code. It is then placed in HL.

$273A-2758 (10042-10072) CALL
Calls $2703 to get the memory address from crunch code, checks stacks, saves

35

COMMAND ROUTINES

DE, DE', BC', HL', IY, and IX on stack, and then calls the address, popping the
registers when done.

$2759-276A (10073-10090) USR
Similar to CALL, only it calls the routine at $3F02 instead of the address obtained
from crunch code.

$276B-2777 (10091-10103) PEEK
Checks for numeric data type in FPA1, and then loads the contents of that address
into FPA1.

$2778-278D (10104-10125) POKE
Gets an address from crunch code, checks to see if it is over the limit pointed to by
$3F15, and loads it with the next number in crunch code if it is low enough. To
poke anywhere in memory, simply POKE 16149 and 16150 with 255.

$278E-2783 (10126-10163) WAIT
Loops endlessly until value1 AND (value2 XOR data from port) =0. Port number,
value1 and value2 are found in the crunch code.

$2784-27CF (10164-10191) &
Uke USA, except it calls the routine at $3F04 instead of $3F02.

$27D0-2844 (10192-10308) FRE
Erases all strings that are not being used by a variable. It does this by stepping
through String space, checking each string for its variable, and moving it to the new
string space inside the old one if it is being used. Exits with the amount of free RAM
(end of String space to start of numeric value table) in FPA 1.

$2845-286E (10309-10350) VAL
Checks for correct variable type, moves the string to $3F77 for processing by
$0A 10, which gets the numeric value of the string.

$286F-2882 (10351-10370) ASC
Checks for string variable type, finds the desired string , and moves the ASCII
value of it into FPA1.

$2883-28AA (10371-10410) CHR
Checks for numeric variable type, and creates a new string with a length of 1.
FPA1 is then moved into the string.

$28AB-28D5 (10411-10453) STR
Checks for numeric variable type, and creates a new string with decimal equivalent
of FPA 1 as its content.

36

COMMAND ROUTINES

28D6-28DF (10454-10463) LEN
Checks for variable type, moves the length of the string (third byte in the definition)
pointed to by FPA1 to FPA1.

28E0-2908 (10464-10507) Check string length
Used by LEFT, RIGHT, and MID to compare the number following the command
with the length of the wanted string. Carry set if number is larger.

$290C-2920 (10508-10528) LEFT
Checks for errors, loads C with the number from crunch code (right end), and loads
A with a (left end). It then jumps to $2978 to cut up the string.

$2921-2938 (10529-10552) RIGHT
Checks for errors, loads C with the length of string -1 (right end), and A with the
number from crunch code (left end). $2978 is jumped to for processing the string.

$2939-2977 (10553-10615) MID
Checks for errors, and sets up A as the first number (left end), and C as the first
number+ the second number-2 (right end). It falls through to $2978 to make the
new string.

$2978-29AF (10616-10671) Cut string
Creates a new string with A being the left boundary, C being the right boundary,
and its contents being the wanted portion of the old string.

$2980-2A3D (10672-10813) INT
Cuts the decimal remainder off of FPA 1, and leaves the result in FPA 1 and A.

$2A3E-2A4F (10814-10831) ERRNUM
Uses the error number at $3FOO as the offset for the table at $0587, and places the
number found in $0587 to FPA1.

$2A50-2A58 (10832-10843) SPEED
Gets the number from crunch code, and places it at $3F01.

$2A5C-2A68 (10844-10856) POS
Calls $6641 to get the horizontal position of the cursor, and puts it in FPA 1.

$2A69-2A75 (10857-10869) VPOS
Calls $6648 to get the vertical position of the cursor, and puts it in FPA 1.

$2A76-2801 (10870-11009) LOMEM
Checks to see if the address obtained from crunch code is too big or less than

37

COMMAND ROUTINES

$6B0F. Moves the Variable table and Variable command name table to new
location, but not the String space. So you should set new Lomems before defining
strings to be sure the Lomem area is not already being used by strings.

$2B02-2B29 (11010-11049) HIMEM
Gets the address from crunch code, calls Clear ($1 FD0), checks for errors, and puts
the address at $3EED.

$2B2A-2B5A (11050-11098) Screen commands
Saves DE on the stack and then calls the actual screen command. SHLOAD,
which means shape-load and was used by Apple to save shape tables on tape, is
only a return. The following commands are rerouted by this routine:

old address
$2B2A
$2B2F
$2B34
$2B39
$2B3E
$2B43
$2B48
$2B4D
$2B52

command
FLASH
INVERSE
NORMAL
TEXT
GR
HGR
HGR2
SHLOAD
HOME

$2B5B-2B6E (11099-11118) COLOR

new address
$6633
$661 D
$6627
$4815
$483C
$638C
$631A
$18C9
$4B68

Puts a number from crunch code into C and calls $492F to place the color value at
$4188.

$2B6F-2B82 (11119-11138) HCOLOR
Like COLOR, except it calls $4928 to put the color at $4189.

$2B83-2BA 1 (11139-11169) PLOT
Gets the x and y from crunch code, places them in C and B, respectively, and calls
$4A9E to plot the point.

$2BA2-2BD2 (11170-11218) HLIN
Sets up C as they, Bas x1, E as x2, and calls $4975 to plot the horizontal line.

$2BD3-2C03 (11219-11267) VLIN
Sets up E as the x, Bas the y1, C as the y2, and calls $49FC to plot the vertical line.

$2C04-2C37 (11268-11319) SCRN
Gets the x from FPA1, and y from crunch code, and puts them in C and B. It then
calls $4AFB to get the color of the block and puts it in FPA1.

38

COMMAND ROUTINE$

$2C38-2C41 (11320-11329) HTAB
Loads C with the number from crunch code, and calls $664F to move cursor.

$2C42-2C56 (11330-11350) VTAB
Calls $6668 with the crunch code number in C to move the cursor down.

$2C57-2C8C (11351-11404) DRAW
Loads E with the shape number, B with they, C with the x, and calls $67DC to draw
the shape.

$2C8D-2CC2 (11405-11458) XDRAW
Like DRAW, but it calls $6904 instead of $67DC.

$2CC3-2CD0 (11459-11472) ROT
Loads C with a number from crunch code, and calls $66E8 to rotate the shape.

$2CD1-2CDE (11473-11486) SCALE
Sets up C with the number and calls $66DO to perform the scaling.

$2CDF-2D62 (11487-11618) HPLOT
Calls $6401 if a point is wanted, $6456 for a line, and $64C5 for a continuation of a
line (e.g., HPLOT TO x,y).

$2D63-2D82 (11619-11649) PDL
Loads C with FPA1, and calls $6918 to scan the paddles. Exits with result in FPA1.

$2D83-2DFD (11650-11773) STORE, RECALL
The STORE entry point is at $2DEC, while RECALL is at $2DF4. This rather long
and complex routine, which stops after the setup, appears to be an initial attempt to
implement the similar Apple II commands. They were used by Apple for cassette
storage, and are essentially archaic.

39

Chapter 6: Parser

The Parser is the portion of BASIC that translates your typed in line into a
shorter and more efficient form, called crunch code. Along the way it checks the
syntax or format of the line, making sure it's legible. The Parser doesn't execute
the command, it only makes it more readable for the execution routines in Chapter
5. Of course, each command has a different syntax, so many different routines are
needed to parse the line. The Parse routines are listed in a table at $3AA. Though
different, some commands share similar syntax (e.g., PLOT x,y and HPLOT x,y). In
order to save space, there are routines that parse a variable, an equation, or some
other common syntactic structure. The parsed lines are placed in the Crunch code
buffer at $4077, and in the Crunch code table, if there is a program line number
present. See chapter 1 for more detail on the Parser. The diagram below of a
sample line ("PRINT x") shows the line in the Input buffer and in the Crunch code
buffer.

Input buffer

50 ~
52
40
4E
54

78
00 -

length of line

ASCII for PRINT

ASCII 'space'
ASCII for x
end of line

Crunch code buffer
04
07

=

00

.

~

~

I

length of crunch code
token for PRINT

crunch code for x

end of line

Diagram of a sample line

While creating your own commands, you usually can use old Parse routines,
thus saving space and your time. But there could be moments when the format you
want can't be done with the current Parse routines. In these situations, you must
remember to keep the following registers intact as you write your own Parse
routine: DE, pointing to the current address in the input line; B', the status byte; IX
and IY, pointing to the stack. Keeping them intact means that when the routine is
exited, they must contain the same information they had when the routine started.
To do this, you can either not use the register in the routine, or you can push the
register to the stack, use it, and then pop off the old contents. If you write your own
Parse routine, you must create a Parse vector entry to point to the Parse routine.

40

PARSER

The entry and the routine can be placed anywhere in RAM, but the primary
command must point to the vector entry and the vector must point to the Parse
routine.

$2E00-2E09 (11TT4-11785) Read buffer
Reads the next non-control ASCII byte from a buffer pointed to by DE into A The
Zero flag is set if the byte is zero, indicating the end of the buffer.

$2E0A-2E0E (11786-11790) Set word scan
Sets B up with the length of the table pointed to by HL, and C with the length of the
table at DE. It then falls through to the next routine to scan the tables.

$2E0F-2E3D (11791-11837) Word scan
Compares the two tables pointed to by HL and DE with each other, with the length
of comparison in B, or C, whichever is shorter. If the alternate Carry flag is not set
upon entering, then the routine also checks for upper case ASCII. The Zero flag is
set if the tables are equivalent.

$2E3E-2E4A (11838-11850) Save registers and Set word scan

$2E4B-2E57 (11851-11863) Save registers and Word scan

$2E58-2E68 (11864-11883) Letter check
If the ASCII byte pointed to by DE is from $41 to $5B, or $61 to $7B, then the Carry
flag is set.

$2E6C-2E73 (11884-11891) Number check
If the ASCII byte pointed to by DE is from $30 to $3A, then the Carry flag is set.

$2E74-2E8F (11892-11919) Reset program pointers
Sets $3ED9, the pointer to the first line number address, to $D180. Sets $3EDB,
the number of line numbers, and $3EDD, the length of the line number table, to 0.
It also sets the random number seed ($3F3E) to $FB40 and $D291.

$2E90-2ED9 (11920-11993) Print parse errors
It first calls $4DAC to see if the error occured because of a tape command. If it did
not, then a"'" is printed followed by the string placed after the call-routine.
"Expected" is printed if $2E91 was called; nothing, if $2E90 was called. It then
returns to the Central loop at $3EA3.

$2EDA-2EE9 (11994-12009) Print character with PR
Calls the current PR routine pointed to by $3F49 ($2EEA for pr#1, and $2F0B for
pr#0). A contains the ASCII character to be printed.

41

PARSER

$2EEA-2F0A (12010-12042) Print to printer
Prints the character in A on the printer by calling $FC66, and falls through to also
print it on the screen.

$2F0B-2F19 (12043-12059) Print to screen
Pauses to execute the SPEED counter at $3F01, then jumps to $4C0F to print the
character on the screen.

$2F1A-2F33 (12060-12083) PR
Uses the next number in crunch code as an offset into the PR table at $3F55. The
new address found in the PR table is moved to $3F49 to vector the current PR
routine.

$2F34-2F4D (12084-12109) IN
Like PR, except that the IN table is at $3F65, and the new address is vectored
through $3F43.

$2F4E-2F5F (12110-12127) Print table
Prints the table pointed to by HL via PR routine. The table's first byte is its length,
followed by the rest of the ASCII table.

$2F60-2F68 (12128-12136) Print a return

$2F69-2F75 (12137-12149) Input using IN
Calls the routine vectored through $3F45 to get input into A.

$2F76-2F7E (12150-12158) Print prompt
Prints the contents of $0479.

$2F7F-3050 (12159-12368) Input line
Reads input device by calling $2F69, and places the characters received into the
Input buffer at $3F75 with $3F75 being the maximum length of the buffer, $3F76
being the length of the buffer, and $3F77 being the start of the characters. Checks
for control characters and acts accordingly if one is encountered. It prints the
characters on screen only, and loads DE with $3F76 when the line is over,
indicated by the ASCII return character or the overflowing of the buffer limit.

$3051-3062 (12369-12386) Control character table
Contains the ASCII codes for control characters like return, arrow keys, ctrl-N, etc.
The above routine checks input characters with these for action.

$3063-3083 (12387-12419) Control address table
This table is similar to the one above in that it is used when control codes are found

42

PARSER

in input. Its format is in the same order, though reversed from the previous one,
where the address of the first code used to be last (ie. ctrl-2 is the last entry in the
above table; return is the first):

address
$2FA4
$2FF9
$2FFB
$3044
$2FF5
$2FF1
$3007
$3016
$3024
$2FBD

control ASCII code
crtl-2
ctrl-arrow
ctrl-L,home,down or up arrow
ctrl-X
ctrl-O
ctrl-N
left arrow, backspace
right arrow
ctrl-I, tab
return

$3084-3092 (12420-12434) Vectored screen print
Calls the routine vectored through $3F4B to print only on the screen.

$3093-30A2 (12435-12450) Print return on screen
Prints the table at $047E, a return, through the above routine. Calling $3098 prints
any table with the length being the first byte of the table.

$30A3-30D3 (12451-12499) Check number size
Converts a number in ASCII form pointed to by DE into an integer in HL. "Number
Too Big" is printed if the number >$FFFF.

$30D4-30EF (12500-12527) Get length of line
Loads $3F4E with the length of the crunch code line pointed to by DE.

$30F0-3149 (12528-12617) Look for line number
Scans the line number table for the line number stored at $3F4F. Because of the
method used for scanning, it is faster to place a wanted line number to GOTO either
in the middle or above, or the very last line of the program. This practice only
slightly increases speed, but is useful when dealing with long programs or frequent
loops.

$314A-31EA (12618-12778) Insert line number into table
Erases any line number if the line already exists. It also moves the tables down,
and enters the line number data into the Line number table, and crunch code line
into the Crunch code table.

$31EB-329E (12779-12958) Delete line number
HL=the line number to delete. It moves the Line number table and Crunch code

43

PARSER

table so that the specified line number and crunch code is erased.

$329F-32EO (12959-13037) Print (HL) with PR
Call $32A7 to print DE as ASCII. Converts the number pointed to by HL to its ASCII
equivalent, and prints it. This routine, and the following routines, all print their data
through $2F4E and the PR routine.

$32EE-3312 (13038-13074) Print primary word
Prints the primary words corresponding to the token in crunch code pointed to by
DE.

$3313-3368 (13075-13163) Print number
Takes the crunch code format of a number, turns it into its ASCII form, and prints it.

$336C-33CF (13164-13263) Print variable name
Gets the variable number from crunch code, looks it up in the Variable table, and
prints out the name (2 letters), with any more letters in crunch code, along with the
variable type.

$3300-3308 (13264-13272) Print "FN"

$3309-33E4 (13273-13284) Print data
Prints the data from crunch code indicated by $90, which is in the format of length
of data, followed by the data itself.

$33E5-33FF (13285-13311) Print string
This routine is similar to the above routine, except that the string is placed in quotes
and is indicated by a $91.

$3400-3430 (13312-13360) Print secondary word
Looks up the ASCII for the symbol from crunch code in the Secondary word table,
and prints it.

$3431-3442 (13361-13378) Check type of secondary word
In: 8=code of symbol. The Carry flag is set if the symbol is a word (e.g., AND,
STEP, etc.).

$3443-3464 (13379-13412) Find primary word
Call $3443 for primary words, or $3440 for secondary words. Scans the table until
the crunch code in A is matched with one in the table. HL is then pointed to the
word following the code.

$3465-3478 (13413-13435) Print command
Prints a line of crunch code pointed to by DE, with the beginning of the crunch code

44

PARSER

being the length of the line, and the end, a colon.

$347C-3492 (13436-13458) Print line
Prints a command by calling the above routine, and then continues printing
commands to the end of the line.

$3493-34A4 (13459-13476) Print line number and line
In: HL points to the line number in the line number table. It calls $329F to print the
line number, and then $347C to print the crunch code.

$34A5-34C8 (13477-13512) Print floating point number
Moves the floating point number pointed to by DE (in crunch code) to FPA 1, and
calls $0611 to print it in decimal.

$34C9-3517 (13513-13591) Move first string
If the first string in the String table is not being used, then it is erased, otherwise it is
moved to the end of the table, erasing the original.

$3518-355A (13592-13658) Make first string
Makes room in front of the string table for a string of length A.

$355B-35C5 (13659-13765) Check type of character
Sets C, B or the Carry flag depending on whether (DE) is a letter, number, :, ?, or
equality symbol. For example, if (DE) is a letter, then C=the length of the word,
B=0, and the Carry flag is set.

$35C6-3608 (13766-13832) Compare word to tables
This routine scans the primary word tables to see if the word you typed in exists.
Call $35C6 for the Primary word table, $35CE for the Secondary word table, or
$3602 for both. The word is pointed to by DE, and the length is in C. If a match
was found, then the Carry flag is set, the crunch code is placed in A, and HL is
pointed to the word in the table.

$3609-3679 (13833-13945) Parse line
Resets the Crunch code buffer pointer ($3EE7) to $4077, and calls $367A to parse
the command. If a colon is present, it continues parsing, ending when the line is
over, and setting DE to the start of the crunch code.

$367A-3690 (13946-13968) Parse command and finish buffer
Calls $36A8 to parse the command, places the length of the Crunch code buffer at
the start of it, and a zero at the end.

$3691-36A7 (13969-13991) Check for end of line
Looks at the Input buffer to see if any colons exist after the command. If so, the

45

PARSER

Carry flag is set.

$36A8-3701 (13992-14081) Parse command
This routine is called to parse the line recieved from an input device, and to put the
crunch code in a buffer pointed to by $3EE7, called the Crunch code buffer. It calls
$35C6 to see if the first word is a primary word. If it is, it puts the crunch code of the
word in the buffer and calls the keyword's parse routines, according to the table at
$03AA. If no primary word was found, it assumes that the word is a variable, and is
parsed by "LET".

$3702-3764 (14082-14180) Look for variable
In: A=variable type to look for, DE points to the name in the Input buffer. The
routine searches the Variable table until a match is found, then it sets the Carry
flag, and puts the variable's number in Hl. The Carry flag is reset if no match was
found.

$3765-3850 (14181-14416) Make variable
Moves the Variable tables to allow for the new variable. It creates an entry in the
Variable table of type A and length C.

$3851-3892 (14417-14482) Hold new variables
This routine temporarily holds new variables in a string until the line is finished
parsing. The string is pointed to by $3EE9, and contains the type of variable, its
length, the position in Input buffer, and the pointer to its crunch code position. A
maximum of $29 variables can be held.

$3893-38C1 (14483-14529) Make new variables
This routine enters any variables stored in the string pointed to by $3EE9 into the
Variable tables by calling $3765 for each individual variable.

$38C2-38D4 (14530-14548) Fill Crunch code buffer
Loads A to the Crunch code buffer pointed to by $3EE7. The buffer is then
incremented to the next byte, and is checked for being too long (>$FF)

$38D5-38DA (14549-14554) Add C to DE

$38DB-390C (14555-14604) Check for symbol
Looks for the wanted symbol in the Input buffer. If it is found, the crunch code is
placed in the Crunch code buffer, and the Carry flag is set. Call the following entry
points for the desired symbols:

46

entry point
$38OB
$38DF
$38E3
$38E7
$38EB
$38EF
$38F3
$38F5

PARSER

$390D-3923 (14605-14627) Check for NOT,+,•

symbol parsed

+

NOT
(
)
crunch code in A

Looks at buffer for one of the above, and puts it in the Crunch code buffer.

$3924-393A (14628-14650) Check for+ or-
Uke the above routine, except it does not look for NOT.

$393B-3952 (14651-14674) Check and Parse data
Checks for any signs by calling $390D, and then calls the next routine to parse the
data.

$3952-397B (14675-14715) Parse data
Parses any type of number or string. If 8=1, then it jumps to $3D25. If B=0, then it
jumps to $3C23. If a quote is found, then it jumps to $3OD2. If a"(" is found, then it
parses the next type of data, as long as it ends with a")".

$397C-3995 (14716-14741) Parse secondary words
This routine scans the Secondary word table to see if the next byte in the Input
buffer is a secondary word. If it is, the token is put in the Crunch code buffer, and
the Carry flag is set.

$3996-39A2 (14742-14754) Table of math priorities
The priorities of the secondary words from + to OR are stored here.

$39A3-39B8 (14755-14776) Print "Illegal Equation"
Prints the message, and returns to the Central loop.

$39B9-3A16 (14777-14870) Equation evaluation in parsing
Steps through the equation, and puts the crunch code into the buffer, following the
equation as it does so.

$3A17-3A78 (14871-14968) Parse equation
Call $3A 17 for numeric equations without error messages, $3A1 B for errors. Call
$3A32 for string equations without errors, and $3A36 to check for errors. The

47

PARSER

Crunch code buffer is filled with the parsed equation.

$3A79-3A7F (14969-14975) Parse WAIT

$3A80-3A8E (14976-14990) Parse DRAW
Checks for "AT x,y".

$3A8F-3AAB (14991-15019) Parse FOR
Checks for a numeric variable and equation.

$3AAC-3ABA (15020-15034) Parse LET
Checks for a varaible, "=", and an equation.

$3ABB-3AF4 (15035-15092) Parse IF
Checks for "GOTO", "THEN", and commands following them.

$3AF5-3AFD (15093-15101) Parse FOR
Checks for "STEP".

$3AFE-3B14 (15102-15124) Parse HPLOT
Checks for "TO x,y".

$3B15-3B53 (15125-15187) Parse DEF
Looks for "FN", and continues at $3A8F to parse equation.

$3B54-3B7F (15188-15231) Parse ON
Checks for "GOTO" or "GOSUB", followed by a series of line numbers and commas.

$3B80-3B8A (15232-15242) Parse RUN
Looks for a word or line number following the RUN.

$3B8B-3BCA (15243-15306) Parse LIST, DEL
Checks for a line number,"," or"·" followed by another line number.

$3BCB-3BEA (15307-15338) Parse variable type
A is loaded with the variable type: $20 for strings, $1 O for integers, O for floating
point If a"(" is found, then 8 is added to the type (e.g., an integer array has a
variable type of $18).

$3BEB-3C9B (15339-15515) Parse variable
If the variable name is a command, then an error is given. $3BCB is called to get
the variable type. If the variable is new, it is placed in the temporary variable string
for later entry.

48

PARSER

$3C9C-3CB6 (15516-15542) Parse dimensioned variables
Checks for a"(" and commas.

$3CB7-3CDB (15543-15579) Parse INPUT
Sees if a line number is present and then falls into parsing NEXT, REM and DIM.

$3CDC-3D12 (15580-15634) Parse PRINT

$3D13-3D8B (15635-15755) Parse number
Puts the number into one of the numeric formats for the crunch code.

$3D8C-3DC5 (15756-15813) Parse line number
Used by GOTO or GOSUB to format a line number.

$3DC6-3E1 D (15814-15901) Parse DATA, REM, or quotes
REM and DATA are parsed as $90 type, and quotes are $91. This is where the
Data-Bump-Bug originates. When you run the cursor over the DATA line, or one is
LOADed in, this routine adds an extra space at the beginning of the data. To fix
this, simply add the following line in your HELLO program: 10 POKE 15830,8:
POKE 15831, 55: POKE 15832, 19: POKE 15824, 216.

$3E1E-3E26 (15902-15910) Parse=
Prints "Illegal Command" if an error occurs.

$3E27-3E35 (15911-15925) Parse:

$3E36-3E42 (15926-15938) Parse=
Prints"'=' expected" if an error occurs.

$3E43-3E4D (15939-15949) Parse,

$3E4E-3E5A (15950-15962) Parse#

$3E5B-3E68 (15963-15976) Parse TO

$3E69-3E76 (159n-15990) Parse AT

$3En-3E86 (15991-16006) Parse GOTO

$3E87-3E9C (16007-16028) Print errors
Prints "Line Numbef' or ":"+" Expected".

$3E9D-3EA2 (16029-16034) Boot routine
This is the routine jumped to when BASIC is first loaded from a tape or disk. It calls

49

PARSER

a routine at $4061, which is later written over as an Input buffer as you use BASIC.
This routine sets up pointers and looks for a HELLO program. It then falls through
to the next routine, the Central loop.

$3EA3-3ED8 (16035-16088) Central loop
This is the immediate mode loop, which is the "heart" of BASIC. Some routines
jump to $3EA3, which resets the stack, while other routines jump to $3EA6, which
keeps the stack intact. The Central loop prints a return, a prompt, and calls the
routine to read the keyboard. If the typed in line has a line number, then it parses
the line, and enters it into the Crunch code table. Otherwise, the line is assumed to
be an immediate command, and, after parsing, the command is called without
moving the crunch code from the Crunch code buffer into the Crunch code table.
For a complete description of the Central loop, see chapter 1.

50

Chapter 7: Data table

A mass of pointers, vectors and other varying data is stored here. Though it
contains many types of data, it can generally be broken down into smaller sections
as follows: program pointers ($3ED9), math and FPA data ($3F17), input and
output vectors ($3F43), Input and Crunch code buffers ($3F75), graphics data
($417B), tape or file data ($4194), screen data ($4239), and the control-d pointers
($4276). This organization helps in both understanding the table and being able to
find the pointers you want in it.

The majority of the space is taken up by two byte pointers and vectors. These
are likely to be the most interesting or useful to you, the programmer. For instance,
by POKing to them you can change the size of the screen or create your own output
routines. By PEE King them you can look for a variable or know the current color or
speed. If you use your own pointers (e.g., in a new command), you can use spaces
like the one at $3F09, though they must not be permanent, because other rou1ines
also temporarily use these areas. This is useful when you are pressed for space,
but when free RAM is no problem, it is safer and easier to keep them elsewhere.

$3ED9 (16089) Pointer to start of Line number table

$3EDB (16091) Number of line numbers

$3EDD (16093) Length of Line number table

$3EDF (16095) Pointer to start of Variable table (LOMEM)

$3EE1 (16097) Pointer to end of Variable table

$3EE3 (16099) Pointer to end of Variable command name table

$3EE5 (16101) Pointer to start of Crunch code table

$3EE7 (16103) Pointer to end of Crunch code buffer

$3EE9 (16105) Pointer to the string of new variables
When the Parser parses a line, it puts all the variables that haven't already been
used in a previous line into string pointed to by this location. After it parses the
line, it goes back and enters each variable into the Variable table.

$3EEB (16107) Number of variables

51

DATA TABLE

$3EED (16109) Pointer to start of Variable value table
This pointer points to the beginning of the table that stores the values of all the
numeric variables. It also is a temporary place for other values that are used during
execution, so sometimes it is simply called the Value table.

$3EEF (16111) Pointer to end of String space

$3EF1 (16113) Temporary pointer to end of String space

$3EF3 (16115) Pointer to start of String space

$3EF5 (16117) Pointer to current DATA line number

$3EF7 (16119) Pointer to current DATA crunch code

$3EF9 (16121) Number of remaining bytes in DATA crunch code

$3EFA (16122) Storage of DE for CONT

$3EFC (16124) Storage of HL' for CONT

$3EFE (16126) Line number for ON ERR

$3F00 (16128) Command error number
This is the offset that is used to print errors. It does not include parse or tape errors.

$3F01 (16129) Current SPEED

$3F02 (16130) Vector to USR routine

$3F04 (16132) Vector to & (ampersand) routine

$3F06 (16134) ASCII code for break (ctrl-c)

$3F07 (16135) ASCII code for pause (ctrl-s)

$3F08 (16136) Indicator of pause

$3F09 (16137) Temporary storage area

$3F14 (16148) ASCII code for indenting line numbers
This is used by LIST to indent the line number of the program. The default code is
a space (32).

52

DATA TABLE

$3F15 (16149) Pointer to POKE limit

$3F17 (16151) Sign for the result of operations

$3F18 (16152) Temporary FPA data and pointers

$3F1 E (16158) FPA1 data used in division

$3F21 (16161) FPA1 status byte
If the byte is 0, then the FPA1 is a floating point number, otherwise, it means the
FPA1 is pointing to a string.

$3F22 (16162) FPA1 mantissa and exponent

$3F27 (16167) FPA2 data used in divsion

$3F2A (16170) FPA2 status byte
0= floating point number, ,oO means FPA2 points to a string.

$3F2B (16171) FPA2 mantissa and exponent

$3F30 (16176) Maximum width of printer line

$3F31 (16177) Position of head on printer

$3F32 (16178) Temporary FPA for Sin, Cos, etc

$3F37 (16183) Temporary FPA for calculations

$3F3E (16190) Random seed number

$3F42 (16194) Sign of floating point numbers
This is like the pointer at $3F17, but this temporary storage area is more generic
than the other one.

$3F43 (16195) IN vector used by READ
This pointer stores the old IN vector while READ is using the tape through this
vector. When READ is done, then it changes the IN vector back to its original value.

$3F45 (16197) Vector to recieve data from device (IN)

$3F47 (16199) Storage of PR vector for writing to tape
This is used by the LOAD and WRITE command to "remember'' the old vector while
the command executes. It is similar in function to the pointer at $3F43.

53

DATA TABLE

$3F49 (16201) Vector to transmit data to device (PR)

$3F4B (16203) Vector to printing on screen
This vector points to the routine that will print the ASCII code in A to the screen
only, without printing it on the printer, etc.

$3F4D (16205) Length of Crunch code buffer

$3F4F (16207) Line number to GOTO, GOSUB, etc.
Stores the last line number that was jumped to, because it is used by GOTO and
GOSUB to store the line number while it checks the Line number table.

$3F51 (16209) Temporary ASCII code for line indenting

$3F52 (16210) Null string
This is pointed to by any variable that does not have a string assigned to it yet.

$3F55 (16213) PR vector table
The 8 addresses for each PR routine are stored in increasing order here (e.g.,
PR#0 is the first vector, PR#1 is the second vector and the others are the same as
PR#O).

$3F65 (16229) IN vector table
Like the PR vector table, only the 8 addresses vector the IN routines.

$3F75 (16245) Maximum length of Input buffer ($80)

$3F76 (16246) Length of Input buffer

$3F77 (16247) Input buffer
The Input buffer is where the Central loop places the line typed in on the keyboard.
All characters are in ASCII fonm, with the end indicated by a 0.

$4076 (16502) Length of Crunch code buffer

$4077 (16503) Crunch code buffer
This is where the parser places the crunch coded line of input. If the line is meant
for a program, then this buffer is copied into the Crunch code table. It ends with a o.

$417B (16763) Coordinates of last plotted hi-res point

$417D (16765) Current SCALE

$417E (16766) Pointer to shape table

54

DATA TABLE

$4180 (16768) Used for DRAWing and ROTating

$4188 (16TT6) Current COLOR

$4189 (167n) Current HCOLOR

$418A (16778) POL buffer
Contains the following data from the last PDL command: joystick, right button, left
button, keypad, spinner. The data of the second paddle follows that of the first.

$4194 (16788) Binary file header data
Consists of the following data needed for the beginning of binary files: 1,0,2,
followed by the address of the binary file in RAM.

$4197 (16791) Address of file in RAM

$4199 (16793) Length of file

$4190 (16796) Temporary name of file in first file buffer

$41A9 (16809) Temporary name of file In second file buffer

$4185 (16821) Device number for drive

$4186 (16822) Temporary storage for files
Used by the tape routines to hold file numbers and data temporarily.

$4180 (16829) Vectorto NO/MON I

$41BF (16831) Vector to NO/MON C

$41C1 (16833) Vector to NO/MON L

$41C3 (16835) Vector to NO/MON 0

$41C5 (16837) Header for first file buffer
This is in the format: mode (A), file number (B), FCB address, length, address of
name, 0,0.

$41CF (16847) Header for second file buffer
Same format as the above buffer.

$4109 (16857) Name and length of first file buffer

55

DATA TABLE

$41 E7 (16871) Name and length of second file buffer

$41F5 (16885) Complete file entry In directory

$421 O (16912) Temporary name holder
Used by CATALOG and APPEND to hold the ASCII names of files.

$4237 (16951) Temporary storage by APPEND

$4239 (16953) ASCII code of cursor

$423A (16954) ASCII code of blank character (space)

$423B (16955) ASCII code of current character

$423C (16956) Left margin for screen

$423D (16957) Right margin for screen

$423E (16958) Top margin for screen

$423F (16959) Bottom margin for screen

$4240 (16960) Buffer for screen routines

$4260 (16992) Unused RAM

$4261 (16993) Number of lines on screen (y) for HOME

$4262 (16994) Number of columns on screen (x) for HOME

$4263 (16995) Starting column number for HOME

$4264 (16996) Starling line number for HOME

$4265 (16997) Address in VRAM of Name table

$4267 (16999) Address in VRAM of Pattern table

$4269 (17001) Current line (y) position of cursor

$426A (17002) Current column (x) position of cursor

$426B (17003) Current input byte

56

DATA TABLE

This is the last ASCII byte read from the keyboard or tape.

$426C (17004) ASCII base

$4260 (17005) Blinking cursor indicator
O indicates the cursor is blinking, ..0 means the cursor does not blink.

$426E (17006) ASCII base for cursor

$426F (17007) Current Name table
$OF means the first Name table in VRAM is being used, $FF indicates the second
Name table is in use.

$4270 (17008) Current screen or graphics mode
This location holds the current screen mode. O=TEXT, 1=GR, 2=HGR, 3=HGR2.

$4271 (17009) Print character indicator
$FF means the characters are printed on screen, 0= they are not.

$4272 (17010) Flash character indicator
$FF means some characters are flashed, while O means they are not being flashed.

$4273 (17011) Frequency of flashing

$4274 (17012) VRAM address of Name table for flashing

$4276 (17014) Ctrl-d Indicator
0= no ctrl-d was pressed. 4= ctrl-d was pressed or printed.

$4277 (17015) Temporary storage of output

$4278 (17016) Length of Ctrl-d buffer

$4279 (17017) Ctrl-d buffer
The print routine places all characters to be printed into this buffer if it encounters a
ctrl-d. It ends when a "return" (13) ASCII is printed.

$4290 (17040) Pointer to Ctrl-d buffer
This pointer points to the current position in the Ctrl-d buffer.

$4292 (17042) Temporary pointer to file names

$4294 (17044) Pointer to default file name
Points to the strings "$$$$1" or "$$$$2".

57

Chapter 8: Screen routines
The screen routines consist of the lo-res GR routines, the TEXT routine, and

the routines that print characters on the video display. They do not handle printing
to the printer or other device other than VRAM. The most important routines in this
chapter are the ones at $4296, because it sets up the TEXT mode and is fun to
change, $4352, because it calls all the other routines to print the character in A on
the screen, $4378, because it loops until you press a key, flashing the cursor while
it scans the keyboard, and $4881, because it sets up the needed table in VRAM for
GR. Other routines, like the Scroll screen routine at $46C0, are also interesting
because they let you do things not easily attainable in a BASIC program.

While BASIC does not implement it, the Video Display Processor in Adam is
capable of 40 columns of text. The reason why Coleco did not use it for the TEXT
mode is unknown to me, because they wanted to keep compatability with Apple,
which has 40 columns. But in case you wish to have 40 columns, a program in
Chapter 11 lets you do this, even though it can't change the number of columns in
GR or HGR.

$4296-4349 (17046-17225) Set TEXT
Called by TEXT to set up the video registers and VRAM with graphics mode 1. To
change the color of the TEXT screen, POKE 17115 with the color of the foreground
(pixel set) being in the top nibble, and the background (pixel off) color in the bottom
nibble. For changing this routine to 40 columns, see chapter 11.

$434A-4351 (17226-17233) Pattern of a character
The pattern of character number $1 Fis replaced with the pattern stored here by the
Set TEXT routine.

$4352-437A (17234-17274) Print character
This routine prints the character whose ASCII is in A. Control codes are printed if
needed, along with scrolling and updating the cursor's position.

$4378-4385 (17275-17333) Read keyboard
Reads the keyboard until a key is pressed, flashing the cursor when necessary.
The rate of the cursor's flashing is stored at $438A and $4388. The default rate is
$400.

$4386-43EC (17334-17388) lnit screen
In: B=number of columns, C=number of lines, D=top column, E=top line,
HL=address of Name table in VRAM, A=address of Pattern table lo, A'=address of

58

SCREEN FOUTlNES

Pattern table hi. Moves the data in the registers to page $42 to set up the screen
for printing.

$43ED-43F3 (17389-17395) Reset ($4271) too

$43F4-4407 (17396-17415) Print cursor
Prints the $7F or $FF character depending on the curso~s position.

$4408-4427 (17416-17447) Print with control characters
This routine checks for control characters before printing the ASCII character in A.
If a contol code is in A, then the routine to print the code is called depending upon
the table at $4791. It falls through to the next routine if the character in A is not a
control code.

$4428-44CA (17448-17610) Print without control characters
Prints the charcter in A on screen without checking for control codes.

$44CB-4639 (17611-17977) Control printing routines
The routines to print control code are gathered here according to the table at
$4791.

$463A-464E (17978-17998) Clear buffer
Loads the $20 byte buffer at $4240 with the clear character ($423A).

$464F-467E (17999-18046) Clear screen
In: H=starting column, L=starting line, B=number of lines to clear. Loads both
Name tables in VRAM with the clear character.

$467F-46A4 (18047-18084) Clear rest of line
Clears the remainder of the line, and writes it to VRAM.

$46A5-46BF (18085-18111) Read rest of line
Moves ASCII from VRAM to $4240 until the end of the line is reached.

$46C0-4714 (18112-18196) Scroll screen
Moves all lines up one position, filling the last line with the clear ASCII.

$4715-4745 (18197-18245) Update cursor
Flashes the cursor by erasing the cursor character in the first Name table.

$4746-4759 (18246-18265) Read character from screen
The character at x,y ($4269) is read into $423B.

59

SCREEN RCXJTlNES

$475A-476F (18266-18287) Calculate Name table position
In: H=column position (x}, L=y. Calculates the address in VRAM of an x,y location
for reading or writing by loading DE with y•32+x+base address of Name table in
VRAM.

$4770-477F (18288-18303) Calculate pattern position
In: A=pattem number. Sets DE up like above except it points to the position in the
Pattern table in VRAM, and BC=8.

$4780-4790 (18304-18320) Table of control ASCII
This table contains the ASCII codes of all the characters that require special
printing routines. They are in the reverse order of the next table.

$4791-47B2 (18321-18354) Table of control addresses
The vectors of all of the following control characters are stored here:

address of routine
$47CB
$457A
$4542
$44AD
$450A
$4526
$44D9
$44FA
$45F1
$45CD
$4619
$45C4
$45B2
$44CB

ASCII character
ctrl·p
delete
insert
ctrl-i, tab
right arrow
left arrow, ctrl-h, backspace
ctrl·d, down arrow
up arrow
ctrl•/
ctrl-x
ctrl-g
home
ctrl-I
ctrl-m, return

$47B3-47CA (18355-18378) Calculate relative position
Loads DE with the cursor's distance from the edges of the window.

$47CB-4814 (18379-18452) Print control-p
Prints the rest of the line on the printer and on the screen.

$4815-483B (18453-18491) TEXT
Checks to see if the cursor ($4239) and the clear ($423A) characters are ASCII. It
then calls $4296 to set up VRAM and set the mode pointer ($4270) too.

$483C-4883 (18492-18563) GR
Sets the mode byte to 1, and calls $48B1 to set up the VRAM tables.

60

SCREEN FOJTINES

$4884-489B (18564-18587) Lo-res block
This table of character patterns creates the 6x4 lo-res blocks for VRAM.

$489C-48B0 (18588-18608) GR video addresses
Contains the following data for the GR VRAM tables and registers (reg. 0=02, reg.
7=01):

$1F80
$3800
$1800
$2000
$0000

$48B1-4927 (18609-18727) Set GR

Sprite attribute table
Sprite pattern table
Name table
Pattern table
Color table

Called by GR to move the lo-res blocks into VRAM and set up the other tables and
registers according to the above tables.

$4928-492E (18728-18734) Put HCOLOR
In: C=Coleco color. Calls $4936 to translate Coleco color into Tl color, and puts it
in $4189.

$492F-4935 (18735-18741) Put COLOR
Same as above, except the Tl color is put in $4188.

$4936-4942 (18742-18754) Get color
Call $4936 for HCOLOR, $493B for COLOR. Translates the Coleco color to Tl form,
and puts the color in A

$4943-494C (18755-18764) Translate color
In: A= Tl color. Translates the Tl color into Coleco color, putting it in A

$494D-495C (18765-18780) HCOLOR table
Tl color numbers in order of COLECO hi-res color scheme.

$495D-496C (18781-18796) Color table
Tl color numbers in order of COLOR numbers.

$496D-49F3 (18797-18931) Plot HUN
The actual entry point is at $497A It sets the color bytes in VRAM to the current
COLOR, looping until the end of the horizontal line is reached.

$49F4-4A95 (18932-19093) Plot VLIN
The entry point is at $49FC. It plots the vertical line by setting the color bytes of the
blocks to the current color.

61

SCREEN FOUTlNES

$4A96-4AF2 (19094-19186) PLOT point
$4A9E is the entry point. Sets the color bytes in VRAM to the current COLOR to plot
the point.

$4AF3-4B3F (19187-19263) Do SCRN
The entry point is at $4AFB. Loads A with the color of the lo-res block pointed to by
B (x), and C (y).

$4B40-4B56 (19264-19286) Read foreground color
In: DE=address in VRAM to be read. It loads A with the top nibble (foreground) of
the byte pointed to by DE.

$4B57-4B67 (19287-19303) Read background color
Similar to the above routine, only it loads A with the bottom nibble.

$4868-4B72 (19304-19314) Home screen
Checks to make sure the mode is not HGR2, and prints the ASCII QC (home).

$4B73-4B85 (19315-19333) Load video registers with address
Loads the table pointed to by HL into the desired video registers, looping until the
table is over. The table is in the format: register number, address byte lo, address
byte high. It ends with an $FF as the register. The diagram on the following page
shows a table of some sample data for this and the next routine.

$4B66-4B93 (19334-19347) Load video registers
Same as the above routine, only that the table is in the format of register number
and then the desired contents of that register, instead of an address.

$4B94-4BAF (19348-19375) Calculate GR offsets
In: B=x, C=y. Loads E with the offset from the right side (6x+8), and D with the
offset from the top of the screen (y/2). A=the type of block.

62

SCREEN FO.JTlNES

Table for table addresses

table lo r rea ste r data . .
00
02
u

01
FF . .

-

....

register #0
data for register
register #7
data for register
end of table

table #0 (Sprite name table)

address of table

table #1 (Sprite pattern table)

address of table

table #2 (Name table)

address of table

end of table

Diagram of some sample data for the register tables

$4BB0-4BDE (19376-19422) Plot top block
Sets the top nibble of the color byte pointed to by DE in VRAM to the current color,
thus plotting the top GR block.

$4BDF-4C0E (19423-19470) Plot bottom block
Like the above routine, only it sets the bottom nibble to the current color.

63

Chapter 9: Tape routines

The tape routines and commands provide you with a way of storing your
programs on a tape, disk, or other device. Changing the device is possible by
poking the device number to $41 BS (e.g., "POKE 16821, 4" makes the first disk
drive the device). As explained in chapter 1, the commands can normally be
accessed in either the immediate mode or the program by using ctrl-d. After a tape
command is typed in the immediate mode, the routine at $4DAC is called. That
routine sorts out which command it is and what to call in order to execute it. It
compares the command to the words in the ASC·II table at $4EAA. If no match is
found, it returns to print an error. But if a match is found, then the corresponding
vector in a table at $4F4F is called. This vector routine, which is in a jump table at
$4E03, checks for "Illegal Form Of OS Command" errors before and after the
command's execution. It also calls the actual execution routine of the command.
Since a tape command's syntax is usually short and rather simple, the execution
routine itself can get parameters from the input buffer, and so no parse routine is
needed.

The path a tape command follows from a program is very similar to the
immediate mode tape word. The differences are in the compare routine (at
$4C0F), the vector table ($4F73), and the jump table (at $4CED, checking for
"Syntax" errors).

The process of adding a new tape command is similar to adding a normal
command, only no parse routine is needed, and you must change the execution
address of the old routine in two tables ($4CED and $4E03) instead of only one
($1917). Besides adding new commands, you can also change the ASCII of old
commands (e.g., "LOAD" can be "DAOL") or errors (e.g., "1/0 Error" can be "Bad
Tape!").

$4C0F-4CEC (19471•19692) Print with tape check
In: A=ASCII of character to print. If A=04 (ctrl-d), then all the ASCII that it gets after
it is put into the Ctrl-d buffer at $4279, until a return ASCII is given. It then looks up
the first word in the Ctrl-d buffer in a table at $4EAA and that vector is called. If
A;,04, it prints the character on the screen, checking the keyboard for pause or
break.

$4CED-4DAB (19693-19883) Ctrl-d tape routines
The tape commands which can be used in programs with the ctrl-d are gathered
here to check for errors before and after the command's execution. This group of

64

TAPE RCXJTINES

routines, along with the immediate group of routines at $4E03 are outlined in the
following table, listing the command's entry point and actual routine address:

name
CATALOG
DELETE
RENAME
LOCK
UNLOCK
BSAVE
BLOAD
BRUN
CLOSE
MON
NOMON
LOAD
SAVE
OPEN
APPEND
WRITE
READ
POSITION
PR
IN
FP
INT
/NIT
RUN
RECOVER

l.ld:g
$4CED
$4CF5
$4D00
$4D07
$4D0E
$4D15
$4D1C
$4D23
$4D2A
$4D31
$4D38
$4D3F
$4D46
$4D4D
$4D54
$4D5B
$4D62
$4D69
$4D70
$4D77
$4D7F
$4D88
$4D91
$4D9A
$4DA3

imm...
$4E03
$4E0F
$4E21
$4E28
$4E2F
$4E36
$4E3D
$4E44
$4E4B
$4E52
$4E59
$4E60
$4E67

$4E6E
$4E77
$4E80
$4E89
$4E92

$4DAC-4E02 (19884-19970) Immediate mode tape checker

routine
$5298
$4F2A
$4FF5
$50A1
$50A0
$5171
$5201
$5294
$6024
$5A07
$5A02
$5DA8
$5D05
$5FB1
$53E5
$5767
$5621
$54D3
$6166
$616F
$4FC3
$4FC0
$62B3
$5DCC
$5034

This routine is called when a normal match for an immediate command is not
found, or the command is not in variable form. It looks in the table at $4E9F for the
command, ignoring commands only used in programs (OPEN, APPEND, etc.), and
calls the vector of the routine.

$4E03-4E9A (19971-20123) Immediate tape routines
This group of command routines are together for error checking. It is like the ctrl-d
routines ($4CED) in that they both call the same routine for the command, differing
in their error printing or checking. For this reason, the entry points are listed in the
above table with the ctrl-d entry points.

$4E9B-4EA9 (20124-20137) First letters of commands
The first letters (ASCII) of all the tape routines are stored here.

$4EAA-4F4E (20138-20302) Table of tape command ASCIJ

65

TAPE Ra.JT7NES

The ASCII names of all the tape commands are stored here in the fonmat: number
of letters in command, ASCII of command, offset into vector table. It starts with
OPEN to IN, and then CATALOG to RUN, thus setting apart the immediate mode
commands from the ctrl-d commands.

$4F4F-4F72 (20303-20338) Vectors of Immediate commands
This table consists of the vectors of the immediate commands starting from
CATALOG to RECOVER.

$4F73-4FA4 (20339-20388) Vectors of ctrl-d commands
This table is similar to the above one, except it starts at OPEN and goes to
RECOVER, and they vector the ctrl-d commands.

$4FA5-4FBF (20389-20415) Tape error ASCII
The ASCII of "Illegal Form Of OS Command", preceded by its length, is stored here.

$4FC0-4FC9 (20416-20425) FP or INT
Call $4FC0 for FP, and $4FC3 for INT. This routine replaces the prompt with a'>'
for INT, and a']' for FP. These commands were included to provide compatability
to Apple's Integer or Floating Point BASICs.

$4FCA-4FF4 (20426-20468) DELETE
Calls $FCE1 to delete the file, which can be either an 'A' or 'H' file, on any drive
and with the name pointed to by DE.

$4FF5-5033 (20469-20531) RENAME
Calls $FCDE to rename the file on any drive with the names pointed to by DE.

$5034-509F (20532-20639) RECOVER
Makes an 'a' or 'h' file into a 'A' or 'H' file. This routine has a bug: it does not
recover binary files. To change this, POKE 20619,72.

$50A0-50F9 (20640-20729) LOCK or UNLOCK
Call $50A0 for UNLOCK, $50A1 for LOCK. Sets the write protect bit of the file's
attribute byte on or off, and sets the permanent bit off.

$50FA-5170 (20720-20848) Get address or length
Call $SOFA for length, $50FD for address. Checks the buffer pointed to by DE for a
comma, an 'L' or 'A', and a decimal or hexidecimal number. $4197 is loaded with
the address, and $4199 with the length.

$5171-5200 (20849-20992) BSA VE
Creates a file consisting of the following: length of header high (1 }, length of
header lo (0), type of file (2), address of file in RAM lo, high, binary data from the
given address with a given length.

66

TAPE ROJT7NES

$5201-5293 (20993-21139) BLOAD
Opens and loads in the binary file from any drive into the wanted address, or to the
original address of the file.

$5294-5297 (21140-21143) BRUN
Calls $5201 to load the binary file, and then it jumps to the beginning of the file, so
no return is expected from the file.

$5298-5352 (21144-21330) CATALOG
Reads the first block on the tape or disk to get the directory. It calls $5353 to print
"Volume:", and the name of the tape. It then prints the files in order if they are not
deleted (bit 2 set), or it is not a system file (bit 3 set). If bit O of the attribute byte is
set, then the directory is over, and the number of free blocks on the tape is printed.

$5353-5367 (21331-21351) Print tape or disk name
Prints the string at $53C4 ("Volume:"), and the name of the tape or disk, which is
stored $41 F5.

$5368-5397 (21352-21399) Print file data
Prints the following from the directory entry at $41 F5: a space, the lock status, the
file type, length of file, a space, and the file name.

$5398-53A4 (21400-21412) Print lock status
Prints an asterisk(") if bit 7 of the attribute byte ($4201) is set.

$53A5-53C3 (21413-21443) Read file name
Moves the name pointed to by HL to the buffer at $421 o. It ends when an 03
character is reached, or the name is $C characters long.

$53C4-53E4 (21444-21476) Words for directory
$53C4=the ASCII for "DIRECTORY". $53CE="Volume:". $53D7="Blocks free".

$53E5•54D2 (21477-21714) APPEND
Opens a file, whose name is pointed to by DE, and skips to the end of it for further
writing. It then sets up the Print screen vector to Write to tape, so that any
characters printed will be set to the file.

$54D3-554E (21715-21838) POStTION
Opens a file and skips to the record number pointed to by DE. Records are
separated by a return chatacter.

$554F-5552 (21839-21842) Write to tape
This routine is called when a character is meant to be printed on screen, but it is
written to the tape or disk for a file. It jumps to NO/MON 0.

67

TAPE Ra.f11NES

$5553-5556 (21843-21846) Read from tape
Similar to the above routine, only it jumps to NO/MON I to read the tape.

$5557-555F (21847-21855) MON I
Reads a character from the tape into A, and prints it on the screen.

$5560-55DC (21856-21980) NOMON or MON 0
Entry point for NOMON is at $5572, MON is at $556D. It writes the character in A to
the tape, and updates the length of the file. If MON O was called, the character is
also printed on the screen.

$55DD-5620 (21981-22048) NOMON I
Reads a character from the tape into A and updates the file pointers.

$5621-57B6 (22049-22454) READ
Checks the buffer pointed to by DE for a file name, and optional record number or
length of records. It then skips to the desired record in the file, and changes the
input vector to Read from tape ($5553) to get a character from tape instead of the
keyboard.

$57B7-598A (22455-22922) WRITE
Like the above routine, except it changes the Print vector to Write to tape ($554F) to
fill a file instead of only being printed on the screen.

$598B-5A01 (22923-23041) Check for record number or length
Looks for an upper or lower case 'B' or 'R' at the buffer pointed to by DE, and, if
either is found, loads HL with the 'B' number, and DE with 'R'.

$5A02-5ABE (23042-23230) NOMON or MON
Entry point for MON is at $5A07, NO MON is at $5A02. It looks for any of the
following letters, and, depending on the command, makes the following changes:

lfilt.e.r vector MQtl NO MON
C $41 BD $4BF8 $5AA9 (a return)
I $41 BF $5557 $55DD
0 $41 C1 $556D $5572
L $41 C3 $4352 $5AA9

$5ABF-5AD0 (23231-23248) Legal file ASCII
A list of acceptable ASCII for file names is stored here.

$5AD1-5ADE (23249-23262) Default file names
The ASCII for "$$$$1" is stored at $5AD1, and "$$$$2" is at $5ADB.

$5ADF-5AEE (23263-23278) Drive to device table

68

TAPE Ra.JT7NES

The ASCII characters for S, V, and Dare stored at $5ADF, $5AE2 stores all the
combinations of these three characters, and the following table at $5AE9 matches
a drive number to its device number:

~ device
1 $08
2 $18
3 $09

~
4
5
6

$5AEF-5807 (23279-23303) Check ASCII of file name

device
$19
$04
$05

Sets the Carry flag if the character pointed to by DE is a letter, number, or one of
the legal ASCII characters stored at $5A8F.

$5808-5818 (23304-23323) Get second life name
Looks for a comma, and falls through to the next routine, putting the name at
$41A9.

$581 C-5843 (23324-23363) Get first file name
Calls $5AEF to see if the ASCII pointed to by DE is legal, and ii it is, then the name
is moved to $419D, adding an 'A' and 03 on the end of it.

$5844-5884 (23364-23476) Get drive number
Looks at the buffer pointed to by DE to check for an S, V, or D. If one is found, the
number after it is placed in the current drive pointer ($4185). The Carry flag is also
set if this occurs.

$5885-58CO (234n-23488) Skip over file name
This routine skips over the name of the file pointed to by HL. The ending of the
name is shown by an 03. HL is then pointed to the end of the name.

$58C1-58CF (23489-23503) Change life type
The entry point for the buffer at $41A9 is at $5BC1, and call $5BC6 for the buffer at
$419D. This routine skips over the name in the wanted buffer, and changes the file
type to the ASCII code in A.

$5800-58EO (23504-23520) Look for default name
If either default names ("$$$$1" or "$$$$2") are found in the FCB, then the Zero flag
is reset, otherwise the "No Buffer Available" error is printed.

$58E1-5C52 (23521-23634) Skip over header on tape
If the file in the buffer at $419D is an 'A' file, then it returns, because normal
programs don't have a header. If the file is an 'H' file, then it moves the tape over
the header, and returns.

$5C53-5CD8 (23635-23768) Update Ille backups
In: A=ASCII of new file type. It checks the directory for any old 'A' or 'H' files,

69

TAPE ROJT/NES

renames them to 'a' or 'h' files, deleting any old 'a' or 'h' files, and saves the new
'A' or 'H' file.

$5CD9-5CF3 (23769-23795) Read one byte from tape
Reads one byte from the device pointed to by $4186 into A, setting Zero flag if the
file being read is over.

$5CF4-5D04 (23796-23812) Write one byte
Sends the byte in A to the device pointed to by $4187,

$5D05-5D7E (23813-23934) SAVE
Gets the name of the file from the buffer pointed to by DE. It then calls $6277 to see
how long the file will be, and Makes the file. $5F23 is called to write the program to
the tape, after which it updates any backups.

$5D7F-5DA7 (23935-23975) Input routine for LOAD
This routine is called by 'Input line' to read a byte from the tape instead of the
keyboard. It calls $5CD9 to read one byte into A If the file is over, it restores the
original pointers and closes the file.

$5DA8-5DF5 (23976-24053) LOAD or RUN
LOAD is at $5DAB, and RUN is at $5DCC. It opens the file whose name is pointed
to by DE, and redirects the vectors for 'Input line', etc. so that they read the tape
instead of the keyboard. To load a new program without erasing the old one,
simply POKE 24010, 163: POKE 24011,62. See chapter 11 for more information on
this change.

$5DF6-5E22 (24054-24098) Input routine for RUN
Similar to the Input routine for LOAD at $5D7F, except it jumps to RUN when the file
is over.

$5E23-5E3D (24099-24125) Write program to tape
Used by SAVE to write a program to the tape. It calls $3493 to print the program,
only the SAVE routine changes the vector so the file goes to tape.

$5E3E-5EE8 (24126-24296) File error table
The strings printed when an error occurs are stored here in the format: length of
string, and the string. The following table lists the error numbers, the address to
print the error, and the errors.

70

T.APE RCJJ11NES

Error#
$01
$02
$03
$04
$05
$06
$07
$08
$09
$QA
$08
$0C
$OD
$OE

Address
$5F0A
$5F0D
$5F10

$5F13

$5F19
$5F1C
$5F1F
$5F22
$5F25

$5F07

$5EE9-5F62 (24297-24418) Print file errors

Error
Range Error
Write Protected
End of Data

File Not Found
1/0 Error
No More Room
File Locked
Syntax Error
No Buffers Available
File Type Mismatch

Control Buffer Overflow

The entry points for certain errors can be seen in the above table. The routine
jumps to the Central loop when it is done printing the error.

$5F63-5FB0 (24419-24496) Close files
This routine is called after an error has occured. It restores any read or write
pointers, and closes any file buffers in RAM and on tape.

$5FB1-6023 (24497-24611) OPEN
This routine gets a name and drive from the buffer at DE, and checks to see if the
file already exists. It creates a new one if it doesn't, and sets up the buffers at
$41 D9 or $41 E7 with the file's name.

$6023-6165 (24612-24933) CLOSE

$6166-616E (24934-24942) PR
This routine is the same as the other PR command at $2F1 A

$616F-61TT (24943-24951) IN
This routine is also like the IN routine at $2F41.

$6178-6193 (24952-24979) Read DE for a number 0-7
Looks at the buffer pointed to by DE to see if the ASCII is a number from Oto 7. HL
is loaded with the number if it is.

$6194-61FE (24980-25086) Set up File data buffer
In: HL=pointer to file name, B=mode, A=file number. It finds an empty buffer at

71

T/JPE RCllflNES

$41 CS or $41 CF, and moves the following data into it: mode, file number, FCB
address, length, length al name.

$61FF-621B (25087-25115) Close File data buffer
Looks for the data buffer containing the file whose number is in B. If it is found, then
the first byte is set to zero, thus closing it.

$621 C-623E (25116-25150) Buffer check
If the name pointed to by HL is not in one al the buffers at $41 D9 or $41 E7, then the
Carry flag is reset, otherwise, it sets the Carry flag.

$623F-625D (25151-25181) Find File data buffer
Looks for the buffer containing the file whose number is in A If it is found, then A is
loaded with the file's mode byte.

$625E-626A (25182-25194) Fill end of File data buffer
It finds the buffer for the file number in A, and loads the last two positions with C
and B.

$626B-6276 (25195-25206) Get length of name
Searches the buffer pointed to by HL for an 03, and loads C with its length.

$6277-6293 (25207-25235) Get length of program
Used by SAVE to see how long a program is. It acts like it will print the program,
but diverts the print routine to $6294 to increment a counter each time a byte is
supposed to be printed. $4197 is loaded with the length.

$6294-62A8 (25236-25256) Increment block counter
This routine increments the 4 byte counter at $4197 to see the length of the
program.

$62A9-62B2 (25257-25266) ASCII for BASIC file name
Contains the ASCII characters for the BASIC program's directory entry on the tape.
$62B3-6309 (25267-25353) INIT
Remakes the directory of the tape in the drive. It makes the first directory entry the
tape's name, and the second is the 'BOOT' program. It does not change a tape
with the BASIC program on it.

$630A-6311 (25354-25361) Set date
Calls $FCD8 to set the date to 13/10/57.This is presumably the birth date al an
author of SmartBASIC.

$6312-6319 (25362-25369) lnit's data
$6315 contains the ASCII characters for "BOOT", and $6312 is the Boot routine (JP
$FCE7).

72

Chapter 10: Graphics

The section of Basic from $631 A to $6BOA handles the hi-res graphics and
game paddles. The routines in it are called by the routines in the command section
(chapter 5). The "Hplot' routine in chapter 5 loads the ZBO registers with data from
crunch code and calls the 'Hplot' routine in this chapter to plot the point or line. It
plots a point by changing bits in a special group of memory called VRAM (Video
RAM), in which each bit is a pixel on the screen. Since there is 16K of VRAM and
only about SK of pixels, there is 1 OK left over for the storage of color and sprites.

The Tl video chip that handles VRAM organizes each section of data into
tables pointed to by registers in the video chip. These registers are not like the
ones in the ZBO, because the video registers can only be written to. Register o and
1 hold information concerning the mode the chip is in. Graphics mode 1 is the
TEXT mode, and mode 2 is the GR, HGR, or HGR2 mode. Register 2 points to the
Name table. Each byte in the Name table corresponds to a region on the screen,
and the number in the table specifies the pattern to be displayed there. Register 3
points to the Color table, which holds the foreground and background colors for
each group of 8 pixels in the pattern table. Register 4 points to the Pattern table.
The Pattern table stores pixels in blocks of 8 (one byte) that form a pattern
displayed on the screen according to the Name table. Register 5 and 6 point to the
Sprite attribute table, which holds the color and position of each sprite, and the
Sprite generator table, which is like the Pattern table in that it stores the shape of
each sprite. For more infonmation, see vol. 1 or chapter 11 for sprites. In mode 1,
the Name table is 768 bytes long. Each entry in the table points to a group of 8
bytes in the Pattern table. Since this allows the ASCII code of a character to point
directly to the entire character pattern, it is used by the TEXT mode. In mode 2, the
name and pattern tables are three times as long as in mode 1. This lets each entry
in the name table point to a separate pattern of 8 bytes, unlike in mode 1, where
patterns have to be reused. Each byte in the Pattern table also has its own
background and foreground colors. This mode is used in GR by loading the
Pattern table with repeating groups of 6 pixels set, 6 off, etc. It has the entries in the
Name table point to separate patterns, and only changes the Color table to plot the
point. A similar setup is used in HGR2, only the patterns and colors are changed to
plot a point. HGR fixes up the ends of the tables from HGR2 to create four lines of
text.

$631A-6343 (25370-25411) HGR2
Sets the mode to HGR2 by loading $4270 with 03. It then calls $6359 to set up the
tables in VRAM.

73

GRAPHICS

$6344-6358 (25412-25432) VRAM addresses for HGR
The table at $6344 lists the address for each kind of VRAM table, as seen below.
The table at $6354 lists immediate data for some video registers.

address Ja12Ja
$1 FB0 Sprite attribute table
$3800 Sprite generator table
$1800 Name table
$2000 Pattern table
$0000 Color table

$6359-638B (25433-25483) Set HGR2
Sets up the video registers according to the above tables, loads the color table with
black foreground and background colors, and erases the pattern table. $66A0 is
finally called to fill the name table.

$638C-6400 (25484-25600) HG R
It sets the mode to HGR by loading $4270 with 02. It then calls $6359 to set up the
tables in VRAM, but when it is returned to, it modifies the name table and the
pattern table to allow four lines of text at the bottom.

$6401-6455 (25601-25685) HPLOT x,y
This routine calculates the address in VRAM of the point in B (x) and C (y), moves
the wanted pattern and color bytes to the tables at $661 Band $6613, and calls
$6543 to plot the point. It then moves the data back into VRAM by calling $65EF.

$6456-6542 (25686-25922) HP LOT x,y to x1 ,y1
Entry point for HPLOT TO x,y is at $64C5. This routine takes the two endpoints of a
line (BC to DE) and plots the points in between them. It reads the pattern and color
bytes from VRAM, plots the line, and writes the data back into VRAM as the line is
plotted.

$6543-65D7 (25923-26071) Plot a point
Checks to make sure the point is on the screen, and the pattern and color bytes are
in the buffers. It then updates the last point plotted byte ($417B). The HCOLOR
byte at $4189 contains both the color and the indicator to either plot the point (bit
7=0), or to erase it (bit 7=1). If it is to be plotted, then the color byte is changed to
the color, and the pattern bytes are changed even if the point will be erased. Note
that it does not write the data back into VRAM.

$65D8-65EE (26072-26094) Calculate offset for patterns
This routine calculates the pattern number of the point, whose xis in B, and y is in
C, in the pattern table.

74

GRAPHICS

$65EF-660A (26095-26122) Write pattern and color
Writes the 8 byte pattern buffer at $660B to the VRAM address pointed to by BC. It
also writes the color buffer ($6613) to the color table.

$660B-6612 (26123-26130) Pattern buffer
An 8 byte buffer for storing the pattern of a position in VRAM is located here.

$6613-661C (26131-26140) Color buffer
This buffer is like the one above, only it stores a pattern's color bytes. A temporary
pointer used in plotting for VRAM is stored at $661 B.

$661 D-6626 (26141-26150) INVERSE
Sets $426C to $80, and $426E to 00.

$6627-6632 (26151-26162) NORMAL
Sets $426C and $426E to O if it is in TEXT mode.

$6633-6640 (26163-26176) FLASH
Sets $426E to $80, and $426C to O if it is in TEXT mode.

$6641-6647 (26177-26183) Do POS
Calls $47B8 to get the cursbr's horizontal position into A.

$6648-664E (26184-26190) Do VPOS
Calls $47B8 to get the vertical position into A.

$664F-666A (26191-26218) Do HTAB
Resets the cursor's horizontal position to the number in C, rounded to the nearest
thir.-J position. It wraps around if needed.

$666B-669F (26219-26271) Do VTAB
Sets the cursor's vertical position to the number in C, checking to make sure it is on
the screen.

$66A0-66B8 (26272-26296) Fill name table
Fills the name table in VRAM with Oto $FF, repeating 3 times, so that each pattern
is pointed to by only one name table position.

$66BC-66CC (26297-26316) Do XDRAW with no x or y
Sets the top bit of $4189 (hcolor) to one, draws the shape by calling $66CD, and
then return $4189 to its original value.

$66CD-66DC (26317-26332) Do DRAW with no x or y
Gets the last point plotted ($417B), and draws the shape there.

75

GRAPHICS

$66DD-66E7 (26333-26343) Do SCALE
Puts the new scale number in C to $4170.

$66EB-67CD (26344-26573) Do ROT
Rotates the shapes according to the number in C. It does this by using some data
to switch the shape's pattern.

$67CE-67DB (26574-26587) Default shape table
The default shape table is stored here. It contains the shape used for
demonstrations in the BASIC manual.

$67DC-6903 (26588-26883) Do DRAW
This routine looks up the shape whose number is in E. It then plots the shape by
tracing its steps, using the data at $4180 to help the routine decipher it.

$6904-6917 (26884-26903) Do XDRAW
Uke the XDRAW routine at $66B9, only it draws the shape with $67DC.

$6918-6B0E (26904-27406) Do PDL
Calls $FD3E to read the game paddles, then depending upon what is wanted
Qoystick, button, etc.), A is loaded with its status. It uses the buffer at $41 SA to
store the data from all the paddle options.

76

Chapter 11: BASIC Changes

This chapter summarizes minor fixes for SmartBASIC and gives examples of
how to add your own commands for sprites and sound. SmartBASIC is one of the
best BASICs around. But it has bugs like adding spaces to REM and DATA lines,
or not Recovering 'h' files. In order to fix these bugs, you can either change BASIC
on the tape or disk, or you can Poke changes in after BASIC is booted. Using a
HELLO program makes the changes easy and almost invisible to the user. If you
wish to make the changes permanent, run the following program with your BASIC
tape or disk in the drtve. The program asks for the drive number, the address you
want to change, and the contents you want the address changed to.

2 ReM ---SASIC-ed.(ch~nges the 3ASIC tape)---
3 LOMEM : 4ooop: INPUT "Drive (B=tape, 4=disk)?"; dd
4 PRINT "Inse,.t BASIC tape or disk into drive"
5 DATA 62,a,1,o,O,l7,0,0,33,48,117,205,243,252,20l
7 FOR x = 0 TO 14: READ d: POKE 29000+x, d: ~EXT: POK~ 29001, dd

10 PRINT: INPUT "Address to change?"; ,3.d
20 INPUT " new contents Eor -:tddress?"; n
30 ad= ad-256: ap = I'1T(ad/1024): ab= ad-ap*l024+30000
40 POKE 29006, ap+2: CALL 29000
50 POKE ab, n: POKE 29012, 246: CALL 29000
60 RESTORE: GOTO 5

BASIC from disk
If you have a disk, you can copy your SmartBASIC from tape to disk with the

Backup program in vol. 1 or any other program that lets you copy BASIC. However,
BASIC still looks for a HELLO program on tape. The program above can be used
to change the device that BASIC looks to for a HELLO program. This lets you put
both BASIC and the HELLO program on disk. The address of the device used to
look for HELLO is 16641. By using BASIC-ed., you can change it from an 8 to a 4
and whenever you boot BASIC, it will look to the disk for the HELLO program.

Recovering binary files
The tape "Recover" command has a bug that won't let it recover 'h' files. The

Recover routine at $5034 checks to see if the file is an 'a' file. If it is, then the
Recover routine changes it to an 'A' file. But if it is an 'h' file, the routine changes it
to 'h' instead of 'H'. This is a simple fix, because all we have to do is change the
second 'h' to 'H'. The location of the 'h' is 20619, and the ASCII for 'H' is 72, so
Poking 20619,72 allows Recovery of binary files. -

77

DATA bump bug
The routine at $3DC6, which parses DATA and REM statements, has a bug. It

adds a space at the start of your data when you type the line in, run your cursor
over it, or load it in from tape or disk. If you are making many updates to a REM or
DATA line, the spaces can pile up, and may push your data off the end. This
destructive bug can be fixed by including the following POKEs in your HELLO
program:

POKE 15830,8: POKE 15831,55: POKE 15832, 19: POKE 15824 216
- a- -- ----- --- ··- '

Interesting Pokes
The Data table of Chapter 7 stores many important pointers and other

structures. Some of the things stored there are not very interesting, and should not
be changed. Others, like many screen pointers, provide results not possible with
normal commands. You can change the color of the screen, size of the screen, or
the ASCII codes of many chjacters displayed on it. A few interesting pointers are
listed below with their address and function.

HGR)

HGR)

address
16953
16954
16956
16957
16958

16959
16993

16994
16995
16996
17001
17002
159
17115
18711
25568
16134
16135
16149
16148
16763

function
ASCII code of the cursor (0-255; default=95)
ASCII code of a blank character (default=32)
left margin of the screen (0-31: default=1)
right margin (default=31)
top margin (0-24; default=0 in TEXT, 20 in GR and

bottom margin (default=23)
of line to HOME (default=24 in TEXT, 4 in GR and

of columns to HOME (default=30)
top margin for HOME (default=0)
left margin for HOME (default=1)
y position of the cursor (same as VPOS)
x position of the cursor (same as POS)
rate of FLASH (default=12)
color of text and background installed by TEXT
color of text and background in GR
color of text and background in HGR
ASCII code for Break (default=ctrl-c)
ASCII code for Pause (default=ctrl-s)
Poke limit (2 bytes in lo, hi format)
ASCII code for indenting lines in LIST (default=32)
coordinates of the last hi-res point plotted (2 bytes)

78

File names
On the Apple II file names can have spaces. For some unknown reason,

Coleco does not allow file names to have spaces, though file names can have
other non-letter or number ASCII. A list of these ASCII codes can be found at
$5ABF. If we replace one of these codes with the code for a space, then file names
can include spaces in them. Poking ~.32 replaces the ASCII character @
($40) with a space.

' CHAINing programs ,
The SmartBASIC that came with our first Adam had the command CHAIN,

even though it did not perform its function. It is used on the Apple II to load in one
program over another without erasing the first. This is helpful when you are using
libraries, because you can load in the subroutines that you need for a specific
program. Of course, each subroutine must have unique line numbers, because the
programs are loaded in just as if you were typing them, so a line that has the same
line number as an existing line replaces the old line. The newer SmartBASICs
don't have the CHAIN command, but the following Pokes change the LOAD
command so that it is like CHAIN:

POKE 24010, 163: POKE 24011,62

In order to remove the changes and have the old LOAD command back, POKE
24010,212 and POKE 24011, 24.

Line numbers
Did you ever wish you could 'GOTO x•1 O'? It could replace lengthy ON ...

GOTO lines with a simple (or complex) equation. The following Pokes let you do
this to both GOTO and GOSUB:

10 DATA 0,0,0,205,3,39,68,77
20 FOR X=O TO 7: READ d: POKE 8342+x, d: POKE 8437+x, d: NEXT
30 POKE 15756, 195: POKE 15757, 27: POKE 15758, 58

40 Columns
The following program changes the TEXT mode so that it uses 40 columns of

text instead of 31. It does not work in GR, HGR or HGR2, because it uses the text
mode on the Video Display Processor. It makes all the needed changes, including
changing the offset calculation routine, the TEXT SETUP routine, and the 40 byte
screen buffer, which is relocated to 28094 below LOMEM. The Poke for changing
the color of the letters and the screen is still at t 7115. Sprites cannot be displayed
in this mode because of the VDP's restrictions.

79

Macros

30 LOMEM : 28400
98 REM ----40 COLU,',!NS----
99 REM ---Poke in TEXT changes---

110 DATA l,240,7,205,32,253,24,14,4l,l97,229,41
115 DATA 41,193,58,112,66,183,32,l,9,193,201
120 FOR z • 0 TO 7; READ d; POKE 17ll4+z, d; NEXT
125 POKB 17177, 1921 POKE 17166, 192; POKE 17988, 40
130 POKE 17215, 240; POKE 17199, 39
135 REM ---Change offset routine---
140 FOR z • 0 TO 14: READ d: POKE 16976+x, d; ~EXT
155 REM ---Change these addresses---
160 DATA 17985,18036,l8098,18162,l8174,18188,18401,l$4l0,l8430
170 FOR z ~ 1 TO 9: READ y: POKE y, 190: POKE y+l, 109: NEXT
180 POKE 18272, 205: POKE 18273, 80: POKE 18274 66
185 TEXT '

It is possible to have a string of ASCII printed when you hit a certain key (e.g.,
hitting the 'Store/Get' key prints "LOAD "). The following program lets you have 30
macros (keys that store a string in them), which are stored in buffers at 28203 and
28234. The program predefines some macros for your use, but the real fun is in
making your own macros. To do this, all you have to do is add or change the Data
statements from line 91 0 and up. The data is in the format: ASCII code of the key,
string to to be printed. If the string has a '&' in it, then the next two bytes store an
ASCII code in hex (e.g., "CATALOG&0D" would print "CATALOG" and a "return" i.e.,
CHR$(13)). The predefined keys and their strings are:

w
clear
delete
print
insert
store/get
shift+store/get
I

II
Ill
IV
V
VI

80

ml!l!l.
NEW
DELETE space
PRINT space
&OE
LOAD space
SAVE space
CATALOG return
RUN return
LIST return
TEXT return
PR#1 return
PR#O return

30 LOME~ : 28400
700 REM ----MACR0----
710 REM ---PoKa in 'Input line' changes---
720 1~T~ E5,C5,D5,2l,3B,6E,ED,58,3S,6E,7B,B2,20,1A,CD
725 DATA 69,2F,~5,2l,5~,6E,Ol,lE,00,ED,B9,El
730 DATA 20,lB,ll,5B,6E,13,lA,67,20,f~.oD,20,Fa,13,1A
740 DATA 87,73,23,72,20,05,36,00,28,36,00,0l,Cl,~l,C9
750 ~OR x s OTO 561 READ d$: GOSUB aoo: POKE x+27407, d: ~£XT
753 POKE 12197, 15: POKE 12198, 107
755 REM ---Poke in cnacros---
760 POKE 28221, I}: l?OK-~ 2,25?., t1: ritK : 2'3222: l!ld: 28253
770 READ a: t~ a= 0 THEN 850
780 POKE mk, a: mk = mk+l: ~~\1 a$: ~Q~ x = l TO LEN(a$): d = \SC(11)~\a~, x,

l))
785 I~ ,j = 38 Tn::;-. .j:;j "' 1IJ3(d, ,c+l, ?:): x = x+3: GOSUS aoo
790 POKE md, d: 111d = md+l: 'l"EXT: POKE md, 0: md = md+l: 3,')·r, 7·7-1
799 RE.YI ---Change hex to jec---
800 .j = 0
805 PQ~ i = 2 ro 1 S1'EI? -1
810 j "'ASC(MIDS(.1$, 3-i, 1))
820 IF j > 64 THEN j s j-55
830 IF j > 47 THEN j a j-48
840 d: d+j*i~4: JZXT i: RETURN
850 END
900 REM ---Preset :nacros---
910 DATA 150,NEW,151,DELETf
q15 DATA 149,PRINT ,148,&0E
920 DATA 147,LOAD ,155,SAVE
925 DAT~ 129,C~r~~OO&OD,130,RUN&OD,131,LIST&OD
930 DATA 132,TEXT&OD,133,l?Ril&OD,134,l?RiO&OD
998 DATA 0
999 END

Sound
Volume 1 described the sound chip and gave examples of how to drive it. The

best way to make sounds, however, is to have a command in BASIC. The following
program creates such a command, called "Sound". It starts by Poking the
execution routine into RAM. After this, line 570 Pokes the new parse address into
the Break command, the command that Sound will replace. This is the part of the
Primary word table's entry that points to the command's parse vectors, which is
what line 573 Pokes in. The parse vectors are in the format: # of vectors, vectors.
Thus the sound command's parse vector entry is 01, 119, 59. Lines 575 and 576
change the Break entry's ASCII in the Primary word table to 'SOUND'. Line 580
changes the execution vector to point to the new Sound command. Lines 590 to
607 SETUP the various tables for the Sound command. Locations 1 to 7 in page o
point to the current note being played for each voice. Locations 9 to 11 store the
note's number (O to 9). Locations 17 to 22 point to the latest note entered, and
locations 25 to 27 store that note's number for each voice. Locations 27974 to
28093 is a 120 byte buffer that stores the notes for each voice in the format: length,
frequency lo, frequency hi, volume. Lines 610 to 690 poke in the interrupt routine
that looks at each voice's note after each interrupt and counts the length of notes.
This routine is jumped to when the VDP creates an interrupt. It sends out notes to
the sound chip and updates the sound notes and pointers. It seems that the
interrupt routine has a bug of some sort; when the screen is being used for a long
time without typing TEXT(or other mode commands that reset VRAM), it randomly
inserts either text or cursors into VRAM that are displayed on the screen. Don't be
alarmed if suddenly an "h" doesn't look like an "h" anymore, it's only on the screen
and not in your program. If someone finds the problem and sees how to fix it,
please contact me. I think it has to do with the timing of the VDP or the length of
the routine.

The syntax for the command is:

81

SOUND [voice 1-3], [length 0-255], [pitch 0-1023], [volume 0-15]

For the length of notes, the higher numbers specify longer lengths. For pitch and
volume,
however, the higher the number, the lower or softer the note is. Following the
program that installs the sound command is a program that demonstrates the
command.

30 L0MEM 1 28400
90 POKE 15756, 195: POKE 15757, 27: POKE 15758, 58

499 REM ----SOUND---
500 REM ---Clear O paqe---
510 POKE 102, 2371 POICE 103, 69
515 REM ---Poke in Sound routine---
520 DATA 205,220,5,125,245,135,198,15,lll,229
525 DATA 126,35,102,lll,229,217,13,217,l9,205,220,5
530 DATA 125,193,2,J,217,13,217,19,197,205,3
535 DATA ~9,193,125,230,15,2,3,41,41,41,41
540 DATA 124,230,63,2,3,217,13,217,19,197,205
545 DATA 220,5,193,125,2,3,225,241,229,l9B,24,lll,38,0,52,l26
550 DATA 254,10,32,8,54,0,33,216,255,9,229,L93,225,ll3,35,ll2,201
560 FOR x ~ 0 TO 87: READ d1 POKE x+27755, d: ~EXT
565 REM ---Change tables for Sound command---
570 POKE 788, 230: POKE 789, 109: POKE 28134, 1: POKE 28135, 119: POK!:: 28136,

59
575 DATA 83,79,85,78,68
576 POR x = 0 TO 4: ReAD d: POKE 79l+x, d: NEXT
580 POKE 6549, 107: POKE 6550, 108
585 REM ---Setup note tablea---
590 DATA 70,109,110,109,150,109
600 POR x a 1 TO 6: :IBAD d: POKE x, d: POKE x+l6, d: NEXT
605 POR X • 27974 TO 28093: POKE X, 0: NEXT
607 POR x • 9 TO 12: POKE x, O; POKE x+l6, 01 NEXT
609 REM ---Poke in O page routine---
610 DATA 213,229,197,245,6,J,14,0,97,104,41,43,229
615 DATA 126,35,102,lll,175,182,209,40,94,213,35,203,126
620 DATA 43,32,J6,229,197,5,l20,135,203,121,40,l,60
625 DATA 6,4,20J,39,l6,252,35,182,246,l28,211,250
630 DATA 203,121,193,32,8,35,126,211,250,203,249,24,222,225,53,35,2U3,25i,3,,

35,35,209,32,41,213
635 DATA 197,5,120,135,60,6,4,203,39,l6,252,246,l43,2ll,250,l93,235
640 DATA 120,198, 8, lll, 38 ,0, 52,126, 254, 10, 3 2, 7, 54, 0, 33, 216,255, 25
650 DATA 235,225,115,35,114,16,144,205,35,253,241,l93,225,209,237,69
660 POR x a OTO 126: READ d: POKE x+27847, d: NEXT
665 REM ---Set up O page---
670 DATA 195,199,108
680 POR x al TO 3: READ d: POKE lOl+x, d1 NEXT
690 CALL 648031 REM ---restart interrupts---

5 REM random demo program for SOUND
7 REM run HE:LLO f il'.'st

10 , = I',T(R."<0(1)*3)+1
20 d = INT(RND(l)*200)+1
30 f = INT(RL,D(l)*lOOO)+SO
40 VO = INT (R."<D(l) *15)+l
50 SOUND v, d, f, VO

60 GOTO 10

82

Sprites
Coleco did not include a sprite command in SmartBASIC because the Apple II

did not have sprites, even though the VDP chip has hardware capable of 32
sprites. In order to use the 32 sprites, as described in vol. 1, you had to use
complex Pokes and machine language routines. The following program lets you
easily create and draw up to 31 sprites in BASIC.

A sprite is a group of 64 pixels arranged in an 8x8 pattern, with the pixels
stored as bits in 8 byles (or 256 pixels in a 16x16 pattern, because16x16 sprites
have 4 groups of 8x8 patterns). See vol. 1 for more information on sprites. Each
sprite can be displayed independently of any other in any mode except for the 40
column TEXT mode.

In order to use sprites in your own programs, I have created four new
commands: SETUP, DEFINE, SPDRAW, BUMP. Lines 10 to 20 replace the VPOS
variable command with the "BUMP" ASCII and vector. Lines 21 o to 250 change
the Primary word table and Command vector table to replace STORE, RECALL and
SHLOAD with SETUP, DEFINE and SPDRAW.

Lines 255 to 290 Poke in the 'SETUP' command. The SETUP command is needed
to switch from little to big sprites, or vice versa. Its effects are seen immediately
upon any sprite that is being dispayed when you enter the SETUP command. It
has the following syntax:

SETUP [magnification], [size]

[magnifrcation]=0 for normal sized sprites, and =1 for sprites that are twice as big
(each pixel is expanded to 4 pixels). [size]=0 for 8x8 sprites, and =1 for 16x16
sprites.

Lines 305 to 340 Poke in the 'DEFINE' command. DEFINE loads the sprite's
pattern into VRAM so that they can be drawn. It has no visual output by itself.
DEFINE's syntax is:

DEFINE [sprite #1-31], [byle 1], [byle 2] ...

[sprite #] is the sprite that will be defined.[byle 1] ... is the data for that sprite. You
should have 8 bytes for 8x8 sprites, and 32 byles for 16x16 sprites.

Lines 355 to 400 Poke in the 'SPDRAW' command. It performs the same function
as the shape table's DRAW command (drawing shapes or patterns on the screen).
Sprites are drawn in the current HCOLOR, and are erased from their previous
position if you redraw them at a different location. Sprites can be drawn in any
screen mode except for the 40 column TEXT mode. SPDRAW has the syntax:

SPDRAW [sprite #1-31] AT [x coordinate], [y coordinate]

[sprite #] is the sprite to be drawn.[x coordinate] and [y coordinate] specify the
location at which the sprite will be drawn. They are like the x and y coordinates of
any shape table drawn with DRAW.

83

Lines 41 0 to 440 Poke in the 'BUMP' routine. The BUMP command can only be
used in equations, (e.g., X= BUMP(10).50). It replaces the VPOS command in the
variable command tables. BUMP returns the number of the lowest number sprite
that is overlapping with the sprite in parenthesis (e.g., if sprite #5 is at 100,100,
sprite #10 is at 97,100, and sprite #27 is at 100,99, then BUMP(10)=5 and
BUMP(27)=5. If there has not been a collision BUMP (x)=0. Unfortunately, it
cannot check for collisions with patterns made with HPLOT, PLOT, DRAW, etc.
Sump's syntax is:

BUMP ((sprite #1-31])

The following program installs the sprite commands, followed by a demonstration
of the sprite commands.

5 REM ---Change tables for 'b•Jf!I.J?' ---
10 POKE 27548, 38: POKE 27549, 108: DATA 66,85,77,80
15 i ~ PEEK(16098)*256+PEEK(l6097)+121
20 FOR x s OTO 3: READ d: POKE i+x, d: NEXT
30 LOMEM : 28400
90 POKE 15756, 195: POKE 15757, 27: POKE 15758, 58

199 REM ----SPRITE----
200 REM ---Change tables for sprite commands---
210 DATA 0,4,6,83,~0,68,~2,65,37,52,230,l09,6,68,69,70,73,78,69
220 DATA 53,249,3,S,83,69,84,85,80
230 POR x = 677 TO 704: READ d: POKE x, d: i'f&XT: R.l!:M E>rimary word t'J.,JlJ
235 POKE 28134, 11 POKE 28135, 119: POKE 28136, 59
240 DATA 72,107,167,107,226,107
243- POR x • 6523 TO 6528: READ d: POKE JC, d: tfEXT: i:t~'i Co.11.na.nd vector t-•.'.)i_~
245 REM ---sprite aetup---
250 DATA 205,220,5,125,254,2,210,0,31,14,224
255 DATA l77,79,217,l3,217,l9,197,205,220,5,L93
257 POKE 25413, 0: POKE 18589, 0: POKE 17104, 0
260 DATA 125,254,2,210,0,31,135,177,50,L76
265 DATA 254,79,6,l,213,205,32,253,33,0,31,62,0
270 DATA 205,41,253,33,0,56,62,L,205,41,253
275 DATA 175,33,0,31,17,l,0,205,38,253,209,201
280 FOR lC ~ 0 TO 67: READ d: POKE x+276l8, d: NEXT
305 REM ---sprite define---
310 DATA 205,220, 5,125,183, 202,0, 31,254, 32,210, 0, 31,229, 33, l 76,254
320 DATA 203,78,225,40,2,4l,4l,4l,41,4l,l,255
325 DATA 55,9,229,217,121,13,217,183,40,18,19
330 DATA 205,220, 5,125,225, JS, 229,213, 17, 1,0, 205, 38,253,209, 24,231,225', 201
340 FOR x ~ 0 TO 58: READ d; POKE x+27559, d: tfEXT
355 REM ---sprite draw---
360 DATA 205,220,5,L25,l83,40,2,254,32,210,0,3l,229,217,l3,217,19,205,220 !i
370 DATA 34,178,254,217,13,217,19,205,220,5
375 DATA 125,33,177,254,119,43,203,78,225,229
380 DATA 125,40,2,135,135,33,179,254,119,58
385 DATA l37,65,J5,119,225,229,4l,4l,l,0,3l,9,213,235
390 DATA 33,177,254,l,4,0,205,26,253,209,225,213,0,175,103,l
395 DATA 233,109,41,9,17,178,254,26,119,35,27,26,Ll9,209,20L
400 FOR x ■ 0 TO 94: READ d; POKE x+27464, d: SEXT
405 REM ---Sprite bump---
410 DATA 194,3,Jl,205,50,9,218,0,31,l25,254,J2,2L0,0,3l,4l,l,233,l09,9
415 DATA 126,230,248,87,54,255,35,126,230,248,95
420 DATA 54,255,229,96,105,6,32,126,35,230,248
425 DATA 186,32,6,126,230,248,187,40,5,35,16,240
430 DATA 6,32,62,32,144,225,115,43,ll4,38,0,lll,l95,l03,9
440 FOR X ~ 0 TO 68: READ d: POKE 27686+x, d1 NEXT

84

5 REM demo of sprites
7 REM run HELLO first

10 HGR: SETUP O, 0: DIM x(31), y(31)
20 FdR X = l TO 10
30 DEFINE x, 28, 28, 8, 29, 42, 20, 98, 4
40 NEXT
45 t = t-+. 2
50 FOR X = l TO 10
60 HCOLOR = X

70 SPDRAw x AT X (X) , y(x)
80 x(x) = INT (60*SIN (x/S+t))+7:J
90 y(x) = INT(60*COS(x/5+t))+70

100 NEXT X, 30TO 45

In vol. 1, there is a program that lets you edit sprites. With a few modifications,
this same program can be used to edit sprites for the new commands. The
following program is similar to the older one, but it prints the sprite's definition for
DEFINE when you are done.

J
2
3

10
l2

": •
20
30
50
60
65
70
80
•o .,
••

100
110
120
l 30
l 35
l<O
l 50
155
l 57
l 60
165
16 7
170
180
1'0 ,..
200
20 5
210
220
22•
2 30
240
250
260
270

REM sprite-editor by 3. ~inkle
DI!-1 i(33)
PRINT: PRit-.T: PRINT: PRHIT "Would you like to have an:": PRUH: co " 1
PRINT N 1. 8x8 sprite": PRINT" 2. 16xl6 sprite": ,?;/.L'h': I.;t',JL' ",;t,2):

IF s < l OR s > 2 THEN TEXr: GOTO 10
rb"' s*B+l.l: bb"' s*S+l
GR: COLOR = 10: x"' 11: y = l
VLIN 0, bb ~T 10: VLIN o, bb ~T rb: ~LIN 10, rb ~T 0: ~LI~ lJ, tb A~ bb
REM print commands on screen
PRINT " arrow keys to move cursor"
PRINT "'a'-plot", "'d'-erase•
PRINT ~•re~urn' when done with sprite"
PRI,..-T "sprite !F"; d;
REM main loop
COLOR a 6: PLOT x, y
GET aS: p = '\SC(a~)
I~ e = 1 TdEN COLOR
COLOR = 0: PLOT x, y

= 8: PLOT x, y: GOTO 140

REM check for s.9ecial commands
IP p 97 THC:N COLOR "' 8: PLOT x, y
IF p 100 THEN COLOR. ::i 0: PLOT x, y: e = 0
IF p 13 THEN 200
REM check for arrow keys
IF p s 163 AND x-1 > 10 THEN X a x-1: e = 0
IF p : 161 AN"D x+l < rb l'HEN
H' fl lOJ '\~O ,r-1 > 0 'l'HEN
IF p "' 162 AND y-+l < ob THEN
IF SCH.N(x, y) = 8 THEN e" l

x "' x-+l: e = 0
y=y-1:e"O

y = y-+l: e " 0

GOTO 100: REM go back to illclin loop
R"S:M print 'lprLt~''l 'l"\td
IF s = 2 THEN 280
REM a•s sprite figuring
aa = 8: ab a 1: ac a 18: ad 11: GOSUB 230
GOTO 500
REM compute .;i.n 3 *9 'olock
FOR y = ab ~o da: i = 0
JOR X = ac TO ad STEP -l
IF SCRN(x, y} = 8 THEN i = i-+2"" (ac-x)
NEXT x: i(co) = i: co= co+l: NEXT y
RETURN
co..-,·h•..u._l 1'-t.)C.'t tlo..,;.e:.

85

279 REM 16,.16 sprite figuring
280 aa = 8: ab• l: ac = 18: ad• 11: GOSUB 230
290 aa a 16: ab"' 9; ac • 18; ad• ll; GOSUB 230
300 aa • 8: ab"' l: ac • 26: ad"' 191 GOSUB 230
310 aa"' 16: ab"' 9: ac = 26: ad• l9r GOSUB 230
499 REM save sprites on tape
500 TEXT: PRI!l'r: PRI!l'r: FOR x"' l TO s"2,.8-l: PRINT i(x); ","; -~~AL': <'A.o .. r !

Ix)
501 PRINT "would you like a hard copy?(y/nP
502 INPUT a$: IF a$ = "y" THEN GOSUB 600
505 PRINT: PRINT: INPUT "Nould you like to plot ~notC\er. :i~dte (y/n}?"; a;,
510 IF a$ < > "y" AND aS < > nn" THEN 500
520 IF aS "' "nn THEN PRINT "End of program•: END
530 GOTO 10
600 PR #1
610 FOR x = 1 TO s"2•s-1
620 PRINT i(x): ",";: NEXT: PRINT i(x)
630 PR tO: RETURN

In order for you to have all of the features listed above at once, they have been
grouped together into a HELLO program (except for the 'BASIC from disk' and
CHAIN fixes) which you can type in and save on your BASIC tape or disk. Any
HELLO program you have been using can be RENAMEd to be BELLO, and the
HELLO program below will load it from tape and execute it as if it were a HELLO
program. If you don't have a BELLO program on the BASIC tape or disk, then the
HELLO program enters the immediate mode like it does when no HELLO program
exists. All the fixes are stored under a LOMEM of 28400, so you will have to modify
programs that use any RAM lower than this, or else the program will conflict with
the new commands and fixes. The LOMEM is divided into the following sections:

SOUND

printed

address
27407
27464
27559
27618
27686
27755
27847
27974
28094
28134

28137
28201

28203
28233

contents
macro routine
SPDRAW routine
DEFINE routine
SETUP routine
BUMP routine
SOUND routine
interrupt routine for sound
note table for 3 voices
40 column screen buffer
parse vector for DEFINE and

sprite coordinate buffer for BUMP
pointer to current macro being

table of macro keys
table of macro definitions

In order for you to fully understand the commands and help you make your
own commands, the assembly code for the routines (locations 27407 to 27973)
have been included in appendix 2.

86

J
3 REM ----KELLO program to install BASIC changes (save on ~~SIC tape)-----
5 REM ---Change tables for 'bump'---

10 POKE 27548, 38: POKE 27549, 108: DATA 66,85,77,80
15 i a PEEK(l6098)•2s6+PEEK{16097)+121
20 FOR x • 0 TO 3: READ d: POKE i+x, d: NEXT
30 L0MEM : 28400
35 FOR x a 27407 TO 28399: POKE x, 0: ~EXT
40 POKE 20619, 72: REM Recover fix
50 POKE 15830, 8: POKE 15831, 55: PO~E 15832, 19: POKE 15824, 216: REM Data-a

ump-Bug
60 POKE 23240, 32: REM spaces in file M.~es _
70 DATA 0,0,0,205,3,39,68,77
80 FOR x = 0 TO 7: RJ::A.D d: POKE 8342+it, d: ~EXT: RE~ line number fix
90 POKE 15756, 195: POKE 15757, 27: POKE 1575a, 58
97 REM
-99 RE::-1 ----40 COLUMNS----
99 REM ---Poke in T~XT changes---

110 DATA l,240,7,205,32,253,24,14,41,l97,229,41
115 DATA 41,1.93,58,1.12,66, 1'33, 32, 1,9,1.93,201
120 FOR x = 0 TO 7: READ d: POKE l7ll4+x, d: NEXT
125 POKE 17177, 192: POKE 17166, 192: POKE 17988, 40
130 POKE 17215, 24·:): POKE 17199, 39
135 RE~ ---Change offset routine---
140 FOR X = 0 TO 14: READ d: POKE 16976+x, d: NEXT
155 REM ---Change these addresses---
160 DATA 17985, 18036, 1.8098, 18162, 181. 7 4, 18188, 18401, 18410, 18430
170 FOR x • l TO 9: READ y: POKE y, 190: POKE y+l, 109: ~EXT
180 POKE 18272, 205: POKE 18273, 80: POKE 18274, 66
113;5 TEXT: TEXT: PRI-'<T "Jus,_t~•~===•=•cnctc" _______ _
198 REM

-199 Rf:M ----SPRITE----
200 REM ---Change t~bles for sprite commands---
210 DATA 0,4,6,83,80,68,82,65,87,52,230,109,6,68,69,70,73,78,69
220 DATA 53,249,3,5,83,69,84,85,80
230 FOR x ~ 677 TO 704: READ d: POKE x, d: NEXT: REM Primary word table
235 POKE 28134, l: POKE 28135, 1.19: POKE 28136, 59
240 DATA 72,107,167,107,226,107
243 FOR x • 6523 TO 6528: READ d: POKE x, d1 NEXT: REM Command vector tabl~
245 REM ---sprite setup---
250 DATA 205,220,5,125,254,2,210,0,31,14,224
255 DATA 177,79,217,13,217,19,197,205,220,5,193
257 POKE 25413, 0: POKE 18589, 01 POKE 17104, 0
260 DATA 125,254,2,210,0,31,135,177,50,176
265 DATA 254,79,6,l,213,205,32,253,33,0,31,62,0
270 DATA 205,41,253,33,0,56,62,l,205,41,253
275 DATA 175,33,0,31,17,l,0,205,38,253,209,201
230 FOR x • 0 TO 67: READ d: POKE x+27618, d: NEXT
305 REM ---sprite define---
310 DATA 205,220,5,l25,l83,202,o,31,254,32
315 DATA 210,0,Jl,229,33,176,254
320 DATA 203,78,225,40,2,41,41,41,41,41,l,255
325 DATA 55,9,229,2l7,12l,l3,217,183,40,l8,19
330 DATA 205,220,5,125,225,35,229,213,17,1
335 DATA 0,205,38,253,209,24,2Jl,225,201
340 FOR x • 0 TO 58: READ d: POKE x+27559, d: NEXT
355 R€M ---sprite jraw---
360 DATA 205,220,5,125,183,40,2,254,32,210
365 DATA 0,3l,229,217,l3,217,19,205,220,5
370 DATA 34,178,254,217,13,217,l9,205,220,5
375 DATA 125,33,177,254,119,43,203,78,225,229
380 DATA l25,40,2,135,135,33,179,254,ll9,58
385 DATA 137,65,35,119,225,229,41,41,l,0,31,9,213,235
390 DATA 33,177,254, l, 4, O, 205, 26,253,209,225, 213,0, 17 5, V)3, l
395 DATA 233,109,41,9,17,178,254,26,119,35,27,26,119,209,201
400 FOR x ~ 0 TO 94: READ d: POKE x+27464, d: ~EXT
405 REM ---Sprite bump---
410 DATA 194, 3, 31,205, 50, 9,218, 0, 31, l ?5, 254, 32,210, 0, 31, 41, 1,233,109, 9
415 DATA 126,230,248,87,54,255,35,126,230,248,95
420 DATA 54,255,229,96,105,6,32,126,35,230,248
425 DATA 186,32,6,126,230,248,l87,40,5,35,l6,240
430 DATA 6, 32, 62, 32,144,225, 115,43, 114, 38,0, lll, 195,103, cl
440 FOR x = 0 TO 58: READ d: POKE 27686+x, d: ~EXT
498 REM

87

l

499 REM ----SOUND----
500 REM ---Clear O page---
510 POKE 102, 237: POKE 103, 69
515 REM ---Poke in Sound routine---
520 DATA 205,220,5,125,245,135,198,15,lll,229
525 DATA 126,35,102,lll,229,217,13,217,19,205,220,5
530 DATA l25,l93,2,3,217,l3,217,l9,l97,205,3
535 DATA 39,l93,125,230,l5,2,3,4l,41,4l,41
540 DATA l24,230,63,2,3,217,l3,217,l9,197,205
545 DATA 220,5,193,125,2,3,225,241,229,198,24,111,38,0,52,126
550 DATA 254,l0,32,8,54,0,33,216,255,9,229,193,225,113,35,ll2,201
560 FOR X 3 0 TO 87: READ d: POKE x+27755, d: NEXT
565 rll::M ---Change tables for Sound command---
570 POKE 788, 230: POKE 789, 109: POKZ 28134, l
573 POKE 28135, 119: POKE 28136, 59
575 DATA 83,79,85,78,68
576 FOR x = 0 TO 4: READ d: POKE 79l+x, d: NEXT
580 POKE 6549, 107: POKE 6550, 108
585 REM ---Setup note tables---
590 DATA 70,109,110,109,150,109
600 FOR X 3 l TO 6, a~~D d: POKE x, d: POKE x+l6, d: NEXT
605 FOR X 3 27974 TO 28093: POKE x, 0: NEXT
607 FOR X • 9 TO 12: POKE x, 0: POKE x+l6, 0: NEXT
609 REM ---Poke in O page routin~---
610 DATA 213,229,197,245,6,3,14,0,97,104,41,43,229
615 DATA 126, 35,102,111,175,182, 209 ,40, 94,213, 3 5, 203, 126
620 DATA 43,32,36,229,197,5,120,135,203,121,40,l,60
625 DATA 6,4,203,39,16,252,35,182,246,128,211,250
630 DATA 203,121,193,32,8,35,126,211,250,203
631 DATA 249,24,222,225,53,35,203,254,35,35,35,209,32,41,213
635 DATA 197,S,120,135,60,6,4,203,39,16,252,246,143,211,250,193,235
640 DATA 120,198,8,lll,38,0,52,l26,254,10,32,7,54,0,33,2l6,255,25
650 DATA 235,225,115,35,114,16,144,205,35,253,241,193,225,209,237,69
660 FOR x 3 0 TO 126: RE~D d: POKE x+27847, d: NEXT
665 REM ---Set up O page---
670 DATA 195,199,108
680 FOR x • l TO 3: READ di POKE lOl+x, d: NEXT
690 CALL 64803: REM ---restart interrupts---
693 REM poke in routine for loading the ~ELLO progr~~
695 DATA 205,87,23,33,163,62,229,195,250,64
697 FOR x • 0 TO 9: READ d: POKE 64+x, d: NEXT
699 REM
~00 REM ----MACR0----
710 REM ---Poke in 'Input line' changes---
720 DATA E5,CS,D5,21,3B,6E,ED,5B,3B,6E,7B,B2,20,1A,CD
725 DATA 69,2F,E5,21,5A,6E,Ol,1E,00,ED,B9,El
73D DATA 20,l8,ll,5B,6E,13,lA,B7,20,FB,0D,20,F8,13,lA
740 DATA B7,73,23,72,20,05,36,0D,2B,36,00,0l,Cl,~1,C9
750 FOR X 3 0 TO 56; READ d$: GOSUB 800: POKE x+27407, d; ~EXT
753 POKE 12197, 15: l?OKE 12198, 107
755 REM ---Poke in macros---
760 POKE 28221, 0: l?OKE 28252, 0: mK = 23222: md = 28253
770 READ a: IF a• 0 THEN 850
780 POKE mk, a: mk "' mk+l: READ a$
781 FOR x • l TO LEN(aS): d • ASC(MIDS(aS, x, 1))
785 IF d • 38 THEN dS "'MID$(a$, x+l, 2): x = x+]: GOSUB aoo
790 POKE md, d: md a md+l; NEXT: POKE md, O; md = md+l: GOT~ 770
799 REM ---Change hex to dec---
800 d • 0
805 FOR i • 2 TO l STEP -1
810 j • ASC(MIOS (d$, 3-i, l))
820 IF j > 64 THEN j = j-55
830 IF j > 47 THEN j = j-48
840 d = d+j*iA4: ~EXT i: RETURN
850 TEXT: POKE 16681, 66: CALL 64: E~D
900 REM ---Preset mdcros---
910 DATA 150,NEW,151,DELETE
915 DATA 149,PRINT ,148,&0E
920 DATA 147,~0AD ,155,SAVE
925 DATA 129,CATALOG&OD,130,RUN&OD,131,LIST&OD
930 DATA 132,rEXT&OD,133,PRfl&00,134,PRfO&DD
998 DATA 0
999 END

88

Appendix 1: Programs

The following programs were mentioned in earlier chapters (BASIC Overview and Math Chapters).
They have been reprinted here for your convenience. The Crunch code viewer program lets you examine
the crunch code of any line you can type in. Simply enter the line as line 1000, and RUN the program.
Line 1000 will never be executed, so you don't have to worry about its affects on the rest of the program.
The program looks in the Line number table for line 1000. When it finds it, the program finds the
corresponding crunch code and prints it out. If you want to print the crunch code on the printer for a hard
copy, include the following line:

2 PR#1

The program following the Crunch code viewer prints the floating point representation of a number
you provide. The number can be positive, negative, whole, or with a decimal point. If you don't want it to
print the floating point number on the printer, erase the PR#1 and PR#O commands in line 40 and 90. The
program finds the floating point number by assigning the number you type in to a variable (w). BASIC then
converts it to floating point, and stores it in the Variable tables. The program looks in the Variable value
table, and prints out the first value in the table, because "w" was the first numeric variable assigned a value.
That way you can see the floating point format for any number.

3 REM ---crunch code viewer for line 1000---
5 LIST 1000: x$ = "0123456789ABCDEF"

10 p = PEEK(l6090)*256+PEEK(16089)
20 IF PEEK(p) = 232 AND PEEK(p+l) = 3 THEN 40
30 p = p+4: GOTO 20
40 y = PEEK(p+3)*256+PEEK(p+2)
50 x = PEEK(y): GOSUB 100: PRIN·r d$; ", .. , : 1'" x = J r.rn,:, Eao
55 FOR i = 1 TO PEEK(y): x = PEEK(i+y)
60 GOSUB 100: PRINT d$; ", "; : NEXT i: PRINT "00": &~D

100 d$ = MID$(x$, INT(x/16)+1, l)+MID$(x$, x-IdT(x/15)*16+1, 1), ,<J:;.'Uce,
998 END
999 REM line 1000 will not be executed, only printed

1000 REM replace this line with the one you want to see

10 .REM Prints floating point representation i~ hex
20 h$ = "0123456789ABCD2:F"
30 INPUT "Enter number in decimal"; w
f0

0
PR #=l: PRINT w; " ";

~ FOR x = 0 TO 4: a= PEEK(53340+x)
60 b = a/16: c = INT(b): GOSUB 100
70 c = a-::*16: GOS:Ja 100
80 l?RI NT " "; : L'iEXT
90 PRINT: PR #0: RUN

100 PRINT MID$(h$, c+l, 1), RETURN

89

Appendix 2: HELLO code

In chapter 11, there is a HELLO program that installs 40 columns, macros, sound
and sprites to BASIC. The assembly language needed to create these changes is
printed below. They serve as examples of how to write new commands. Note that the
sound and sprite commands often decrement C' and increment DE, because DE points
to the crunch code for the line and C' hold the length of the line. Registers C' and DE
are often Pushed to the stack when the routine needs an extra register to do
something, and then Poped off when it is done using them for its own purpose. Other
registers, like HL' and DE', also need to be Pushed and Poped when you use them tor
someting other than their original purpose. The page O routine Pushes every register
at the start and then Pops them all off at the end, because the routine is called during
an Interrupt, which can occur at any time in the middle of any routine, so the interrupt
routine has to Push and Pop every register that it uses. The BUMP routine is
interesting because it replaces a variable command. By looking at it, you can get a feel
for this type of command. They often call similar subroutines to either change FPA1
into the HL register, or vice versa. The number within the parenthesis of any variable
command (numeric) is stored in FPA 1 when it calls the command. This way the
command doesn't have to bother getting the number. For the BUMP routine, and other
variable command routines, register BC is the only register that needs to be Pushed
and Poped. The DE register is already Pushed by the routine that calls the variable
command. The macro routine is an example of diverting an already existing routine so
that it can perform some other function as well as its original one. The HELLO program
replaces three byte in the original routine so that it calls the new routine. The new
routine performs the action of these three bytes, and then does what it wants, in this
case it checks the keyboard for the macro keys and prints any necessary macros.
When the routine returns to the original one, the original continues on its way, usually
without noticing the change. However you use these printouts, whether to learn from
them or to change them, I'm sure they will be appreciated.

90

Macro routine, called by •input line• at $2F7F.

27 407 6BOF
27408 6810
27409 6Bll
27410 6812
27413 6315
27417 6819
27418 5a1A
27419 6Bld
27421 681D
27424 6820
27425 6821
27428 6824
27431 6.827
27433 Fi329
27434 682A
27436 6S2C
27439 682[<'
27440 6830
27441 6831
27442 6832
27444 6834
27445 6835
27447 6837
27448 6~38
27449 6839
27450 683A
27451 6838
27452 693C
27453 6830
27455 6B3F
27457 6341
27458 6842
27460 6844
27461 6845
27462 6846
27463 6847

27464 6!:14 ➔
27467 6'343
27468 6B4C
27469 6340
27471 684F
27473 6'351
27476 6854
27477 6355
27478 6856
27479 6857
27480 6858
27481 6859
27484 695C
2 7487 6BSF
2 7488 6860

.27489 6861
27490 6862
27491 6863
27494 6866
27495 6367
27498 6B6A

es
cs
DS
213B6E
E:D58386E
7B
82
ZJlA
CD692F
ES
215A6E
OllEOO
EDB9
'1
2018
ll586E
13
lA
87
20FB
OD
20F8
13

" B7
73
23
72
2005
3600
23
3600
Dl
Cl
El
C9

C:JOCJ S
7D
B7
2802
F'E20
Cl2J01F
ES
D9
OD
09
13
CDDC05
22B2F!::
D9
OD
D9
13
CDDCO 5
7D
z:slF~
77

PUSH
PUSH
PUSH
LD
LD
LD
OR
.JR
CALL
PUSH
LD
LD
CPD~
POP
JR
LD
I'l'C
LO
OR
JR
DEC
JR
me
LO
OR
LD
INC
LD
JR
LO
DEC
LD
POP
POP
POP
RET

CI\.L!:..
LD
OR
JR
CP
JP
PUSrl
EXX
IJ!':C
EXX
[~C

CALL
LO
::xx
DEC
a.:'(,(

me
CA.LL
L,J

HL
BC
DE
HL, nn 6E3B
OE, (nn) 6E3B
A,E
D
-~Z,e 6837
nn 2F69
f!L
.-IL,nn 6E5A
BC, nn OOH:

f!L
i'lZ,e 6844
DE, nn 6ESB
DE
A, (DE)
A
N'Z,e 6B2F
C
NZ,e 6B2F
Ol
~. (DE)
A
(HL),E
fil,

(HL) ,D
NZ,e 6844
Uit.), n
HL
(HL), n
DE
BC
HL

nn ,J5DC
A,L
A
Z,e 6B5l
n
NC,nn lFOO
CL

C

De
nn JSrJC
(nn),HL FEB2

C

DE
nn 05DC

tiL.., nn FEBl
(H.L), A

91

save registers

is macro being printed?
yes. get next I\SCII
no. get input from keyboard

compare input ,..ith rn-i.cro ta.Ole
at $6E5A.

if match is found look up string

get rn~cro 11.SCII to print

increment pointers

if word over load pointer with O

pop registers ~nd return

sPDRAW' rqJ.]tine,
'get sprite 1F
print error if <0 or >31

save it on ~t~cl<
get)C-coord =

~ave it at $~£B2
get y-coar1 ,;

save it at SFEBl

27499 6B68 2B DEC HC
SP~t~W, c ""-'• 27500 6a6c C34E 3IT 1,(tiL)

27502 6B6E El POP HL
27503 6B6F es i?rJScf SL
27504 6670 70 !.1 _\,t. multiply sprite J by 4 27505 6671 2902 JR Z,e 6875
27507 6873 87 ADD A,A if in 16Xl6 sprite =de

27508 6874 87 ADO A,A
27509 6'37 5 2133FE LO liL, nn FE83
27512 6B78 77 LO (HL),A save #: at $FEBJ
27513 6379]~8941 LO A., (nn) -H39
2 7516 6B7C 23 me HL save color at $FEB4 2 7517 687D 77 LO (HL),A
27518 6B7E El POP 8L
27519 6B7F ,, ?U5:_i :,1::..

27520 6B80 29 ADD HL,HL
27521 6881 29 A.DD -it.,>iL
27522 6B82 OlOOlF LD 8C,nn lFOO
27525 6885 D9 ADD HL,8C
27526 6886 D5 i?USH DE
27527 6887 ES EX DE,HL
27528 6888 21BlF:: LO HL,nn FEBl load 4 bytes fro~ $CE31
2 7 531 6888 010400 LO 8C,nn 0004 to VRAM in the sprite name td.ole
27534 688E COlAFD CALL nn FDlA
27537 6891 01 ?OP DE
27538 6892 El ?O? liL
27539 6893 05 PUSH OE
27540 61394 DO 10?
27541 6895 ,.,. XOR A
27542 6896 67 LD H,A
27543 6897 01E960 LD BC,nn 60&9
27546 689A 29 ADD HL,HL
27547 6B9B 09 ADO HL,BC
27548 6B9C 1182FE :.. o OP., nn I" F=.;'3 2
27551 633F LA LO A, (DE) IOOVe X and y from $FEBl
27552 6BAO 77 LO (HL) ,A to sprite entry in table
27553 6BA1 23 INC HL at $6DE9 (used for BUMP)
27554 6BA2 18 DEC o,
27555 6BA3 lA LO A, (OE)
27556 6BA4 77 LO (fiL).A
27557 6BA5 01 ?O? DE return
27558 6BA6 C9 RET

TJEFI~E routLrte
27559 68A7 CDDC05 CALL nn OSDC get ,ipri te ' ~ 7562 6BAA 7D LO A,L
27563 6BAB B7 DR ' 27564 68AC CA.001F J? Z,nn lFOO
27 56 7 .. ,.,. FE20 C? n ,i,r ror lE < 8 ,) E >31

27569 oaa1 D2001F J? NC,nn 11"00
27 57 2 6884 ES PUSH HL
27573 68B5 21BOFE LO HL,nn ~EBO
27576 6BB8 CB4E SIT 1, {~L)
27578 63BA El ?O? HL
27579 6B8B 2802 JR Z,e 693f
27581 6BBD 29 A.DD rlL, rlL
2 7 58 2 6aai;: 29 ,oo HL,HL mult ' by 04 L£
27583 6aBF 29 A.DD HL,HL in 16Xl6 mode
27584 saco 29 A.OD :IL,rl:L
27 58 5 6':!Cl ,. \'.)!) -it,, r1:r~
27586 6BC2 01FF37 LO 8C, nn 37FF
27589 6BC5 09 ADD c!L,BC add ' to :),';se of
27591.) 68C6 es "U-'H. SC sprite patcern table
27 591 6aC7 D9 i:::xx { S3800)

27592 6BC8 79 LO A., C
2 7 593 68C9 JD !)EC C
27594 68C\ " ~ {'{

92

Dff;Nc, co .. 't
27595 6BCB 87 OR A i, crunch code over?
275% 6BCC 2812 JR , .. 6BE0 yes. then return
27598 6BCE 13 INC DE no. get • (data for fH.ttern}
27599 6BCF CDDCOS CALL nn D50C
27602 6B02 70 LO A,L
27603 6803 El 1?01> if_.,
27604 6804 23 r,~c 'i r.,
27605 6805 E5 PUSH KL
27606 6806 D5 PUSH DE
27607 6807 110100 LO DE,nn 0001
27610 6131)\ CD26FD CALL nn FD26 ;end it to VRA.M
27613 6B00 01 POP DE
27614 6SOC: 18E7 JR e 6BC7
27616 6SC.:0 El POP 'iL l-Jop to get aext • 27617 6BE1 C9 RET

return

SETUP routini
27618 6BE2 CDDCOS CALL nn D5DC get magnification • 27621 6BE5 7D LD A,L ert"or if >l
27622 6BE6 F'E02 CP n
27624 6BE8 02001F JP NC,nn lFOO
27627 6BEB OEEO LD C,n
27629 613€:0 '1 OR C
27630 6BEE 4F LD C,A
27631 6BEF D9 i:;xx
2763 2 6BFO OD Dt::C C
27033 6B,l"t ,)9 -; (,{
27634 6BF2 l3 INC DE
27635 6BF3 cs PUSti BC
27636 6BF4 coocos CALL nn osoc gee size • 27639 6BF7 Cl POP BC
27640 6BF8 7D LO A,L
27641 6BF9 FJ::02 CP n
27643 6i3FB 0200 H' 1, 'I:~. :in l l""JJ H'l'.",)1'." if >l
27646 6BFE 87 ADD A,A
27647 6BFF Bl o• C combine mag and size
27648 6C00 32B0FE LO (nn), .I\. FEBO to put in regi.st'"'" l of VOP
276 51 6C03 4P LO C,A save ' at $FEBO 27652 6C04 0601 LD 3,n (for dc't.w and define) 27654 6CD6 ,)'i r:,. J 51 1)e:
2 765 5 6C'.)7 :::::n,J?'J ~~LL nn FD20 send ' to cog l 27658 6COA 21001F LD liL,nn lFOO
27661 6COD 3E00 LO A, n
27663 6COF CD?:%'1) C,U.L nn FD29 clear sprite name table
27666 6Cl2 210038 LD iiL, nn 3-'300
27669 6Cl5 3E01 LD eli., n
27671 6Cl7 CD29FD CA.L.:. nn FD29
27674 6ClA AF XOR A ~et registers "to point to
27675 6C1B 21001F LIJ ·H,,nn lFOO ~ 3800 for sprite pattern table
2767~ 6ClE 110100 LO DE,nn 0001
27681 6C21 CD26FD C,\LL nn FD26
27684 6C24 Dl ?0P DE
27685 6C25 C9 RET return

93

27686 6C26
27689 6C29
J.7692 5C2C
27695 6C2F
27696 6C30
27698 6C32
27701 6C35
27702 6C36
27705 6C39
27706 6C]A
27707 6C3B
27709 6C3D
27710 6C3E
27712 6C4tl
27713 6C.:4 l
27714 6C42
277Hi 5C44
27717 6C45
27719 ?C::'+7
L7720 ':i,:"48

I "' - ..;, ~9

' •A
27,i-. i.4-C
27725 6C40
27726 6C4E
n 121:1 6:50
J.7729 6C5l
.<:7731 6C53
0732 6C54
L7734 6C50
27735 6C57
27737 6C59
27738 6C5A
27740 6C5C
27742 6C5E
27744 6C60
27745 6C61
27746 6C62
27747 6C63
27748 6C64
27749 6C65
27751 6C67
27752 6C68

27755 6C6B
27758 6C6E
27759 6C6F
27760 6C7"J
27761 6C71
2776] 6:73
27764 6C74
27765 6C75
l7766 6C76
27767 6C77
2776'3 6C7d
27769 6C79
27770 6C7A
27771 6C7B
2 777 2 6C7C
27773 6,:?Q
27774 6C7E
27777 6C'31
27778 6C82
27779 0C.83
27780 6C34

C2031F
CD321)9
OA001F
70
Fl!:20
D2001F
29
;) LE:'30,)
09

" E6E'd
57
J6E'F

" 7 r:
E6E'i3
SF
J6F~ ·-" 60
69
0620
7E
23
E6F8
BA
2006
7E
E6F8
BB
2805
23
lOFO
0620
3E20
90
El
73
28
72
2600
6F
C36709

CDOCO?
70
F'S
➔ 7
C60F
6F
ES

" 23
66
6F
~5
09
00
09
tl
CDOC05

" Cl
02
OJ

JP
C-4,..1.,, ...
JP
LD
CP
JP
.00
,,:)

AOD
LD
.\:rn
LJ

'"" T ,.r;
,)

il\.~O

'"' CD

'"' LO
LD
LO
MC
AND
CP
JR
LD
"SD
CP
JR
INC
l).H'?.
LD
co
SUB
POP
LO
08C
,,o
LD
LO
JP

CA.LL
LO
PiJS,i
.\OD
ADO
LO
PUSH
co
INC
LO
c.. :J
?USd
:;;;xx
OEC
e<X
[,'1,-:

CALL
LO
'O'
LO

NZ,nn 1F03
nn ,H]2
c, nn lF00
A,L
n
NC,nn lF00
'iL,·U ...
3C., '1'1 6083
!iL,BC
A., (HL)
n
0,A
(,u.),n
i: ...
\, (-if ...)

3, n
A, (tiL)
rlL
n
D
NZ,e 6C59
A.,{tiL)
n

Z,e 6CSE
clL
e 6C4C
B,n
A, n
B
rlL
(HL), E
SL
(,n.)' D
H, n
L,A
nn 0967

nn 0SDC
A., L

"" ,, '
A,n
L,A
HL
A, (:iL)
rlL
-!.,(%)

:iL

C

) -:
nn DSDC
S,L
3 :-:
(BC) ,A
,c

94

BUJltP r:outine
error if stdng
convert P?Al to HL

error if HL too big

use 9L d.S offset into $6DE9

load I) -:l.nd I:: ·;1i ~J,.
:< -:i.nd i)f i)ri.te

search table for
coordinates of other sprites

if match is not found
then loop ag-:l.iri

get t of the sprite that
bumps and put it in FPAl

SOUND rout l rie

get voice #

push it
mult by 2 ~nd add 15
to point to next note
push pointer

get lengtll :t

save i: in note ~able

27781 6Cd5
27782 6C-36
n11i1 6r;37
27784 6C88
27785 6C89
27786 6C8A
27789 6C80
27790 6C8E
27791 6C9F
27793 6C9l
27794 6C92
27795 6C93
27796 6C94
27797 6C95
27798 6C96
27799 6C97
27800 6C9A
27802 6C9A
27803 6C9B
27804 6C9C
27805 6C9D
27806 6C9E
27807 6C9F
27808 6CA.0
27B09 6C:\l
27812 6CA4
27813 6CA5
27814 6CA6
'2:7815 6CA7
27816 6CA8
27817 6CA9
27818 6<:AA
27819 6CAB
27821 6CAO
27822 6CAE
27824 6CB0
27825 6CB1
27826 6CB2
27828 6CB4
27830 6CB6
27832 6CB8
27835 6C88
27836 6CBC
27837 6CBD
27838 6CBE
27839 6CBF
27840 6CCO
27841 6CC1
27842 6CC2
27843 6CC3

09
·):)

,,;
13
cs
C00327
Cl
70
E60f
n
03
29
29
29
29
7C

02
03
09
,)Q

09
l3
cs
coocos
Cl
70
02
03
El
'1

" C618 .,
2600
14
7E
E'EOA
2008
3600
21D8FF
89
ES
Cl
El
'l
23
70
C9
),)

E:XX
),,::;

::-<X
I'IC
PUSH:
CA.f. .. l. ,o,
LD
'l,'{I)

: ..)

me
ADD
ADD
ADD
A.i);J

LD
'I.-~ J
LO
I'IC
exx
:Ji<;C
exx
me
PUSH:
CALL ,o,
LO
LO
INC ,o, ,o,
Pd,5.--{

A.OD
LO
LO
t,'l"C
LO
c,
JR
LO
LO
SDD
PUSH ,o, ,o,
,.D
INC ,.o
'<.€'f
,oe

OE
BC
nn 2703
BC
A., L
n
(3::::') ' A.
3C
HL,HL
clL, ·U,
Hl.,HL
ell., :-IL

n
(BC),-\
dC

C

DE
BC
nn 05DC
BC
A,L
(BC),A
3C
<L

" ,i'.,
R,n
L,R
ii, n
(.-u ..)
A, (HL)
n
'i'Z, e 6C.3E
(ttr.l.n
fiL, nn FF08
·.-tr.., BC
ffL
BC
rlL
(fil.),C
:iL
('-IL) ,'3

get pitch It

save botto,n riibble
in note tabl>:!

save top part 1n note tao~~

get volume t

save in note table

update point~r (* 0f notes)

loop the buffer if more
than 10 notes

save pointer to note table

return

sound interupt routine (jumped to from zero page}

27844 6CC4
27845 6CC5
27846 6CC6
27847 6CC7
27848 6CC8
27849 6CC9
27850 s.:::c::_'\
:27 .;, 51 ,)C:: 3
27853 6CCO
27855 6CCF
27856 6COO
27857 6COl
27858 6CD2
27859 6CD3
27860 6C04
.27 ➔ 61 6-::os
27862 6CD6

DO
00
00
05
ES
cs .­. ' JO ,J 3
OE:00
61
68
29
2B
es
7S
23
66

:fOP
NOP
;'\jQp

l?UStt OE
PUSH HL
PUSH 13C
PU Si-I o'I.E'
r.,o 3,n
C..D C, n
Li) -1,C
LO C.., 3
\DD HL,HL
DE:C .-!L
l?fJS-i 'iL
r.,o 'I., (·L)
Il1C ,-iL
LO ii,(HL)

95

s;i"e cegisters

get point•ff to ::urrent nota

27863 6CD7 6F LO L , I\ s "" &A , ... ~,>.,. (:er,,, t.
27864 6CD➔ Sf .{?~ ' 27865 6CD9 86 OR (dL)

is note being played? 27866 6CDA Dl eoe 1)-; a
27867 6CDB 285E JR , .. 603:3
27869 6CDO D5 PUSH DE no. then 1009 for next voice
27870 6COE 23 1,c SL

has the 27871 6CDF CB7E SIT 7, {H.L) note been sent to VDP?
27873 6CE1 28 ·M.:: ;,,
27874 6CB2 2024 JR NZ,e 6008
27876 6CE4 ES PUSH eL

tne,1 g~t d<l ta from. note 27877 6CES cs PUSl'i ac no. tacle
27878 6CE6 05 DEC 8 and ,end it out
27879 6CE7 78 LO A,B
27880 6CEB 87 ADD A,A
27881 6CE9 CB79 " ' 7,C
27883 6CEB 2801 JR Z,e 6CEE
27885 6CED 3C !SC A
27886 6CEE 0604 LD B,n
27888 6CFO C827 SLA A
27890 6CF2 lOFC DJNZ e 6CF0
.c7892 6.:::F4 23 I"IC SL
'7893 6CF5 •• OS (,{i.,)

27~94 6.::F6 F680 OR n
27896 6CF8 D3FA OUT (n),A
27898 6CFA CB79 BIT 7 ,c
27900 6CFC Cl POP ac
27901 6CFD 2008 JR NZ,e 6007
27903 6CFF 23 INC eL
27904 6000 7E LO A, (HL)
27905 6001 D3FA OUT (nl,A
27907 6003 CBF9 SET 7 ,c
27909 6005 18DE JR • 6CB5
27911 6007 '1 POP eL

decrement length counter 27912 6008 35 DEC (SL)
27913 6009 23 me HL
27914 600A CBFE se:·r 7, (;-fr~) set flag that note has been sent
27916 600C 23 ISC SL
27917 600D 23 me HL
27918 6DOE 23 ISC H:L
27919 GOOF 01 .:>QiJ ,}>:: is note over (countar =0)?
27920 6D10 2029 JR ~z,e 6038 no. then loop for next note
27922 6D12 DS PUSH. DE
27923 6D13 cs PUSH. BC
27924 6D14 05 DEC 8

send out vol. of SF (off) 27925 6015 78 LO A,B
(its not obvious, .but that is what it 27926 6D16 87 ADO ,,,

volume 1 a.'::>out SOll:ld) 27927 6~17 JC r,,c '
does. see

27928 6018 0604 LO B,n
27930 601A CB27 SLA A
27932 6DlC lOFe DJNZ • 6Dli\
27934 6D1E r'6U OR n
27936 6020 D3FA OUT (n) ,A.
279]8 6022 Cl PO> JC
2.7939 6D23 EB 1:::x ;J~, i'."~
27940 6024 78 CD A,B
27941 6D25 C608 ADD A, n

update • of notes 27943 6D27 6F LD L,A
27944 6D28 2600 LO ,,n
27946 6D2A 34 me (SL)
27947 6D2B 7E LO -~, (HL)

if 10 loop note table pointer 27948 602C FEOA CP > n
to start of table 27950 6021!: ?.007 JR :iZ, e 6D37

27952 6D30 3600 LD (H.L), n
27954 6D32 21D8FF LD HL, nn F~D8
27957 6D35 19 ADD ciL, DE
27958 6D36 EB EX DE,HL
27959 6D37 El POP "L save pointer;;
27960 6038 73 LD (:iL) ,E
27961 6D39 23 INC iiL
27962 6D3A 72 LO (\iL),D
27963 6D38 1090 DJNZ • 6CCO loop foe next voice
27965 6D3D CD23FD CALL nn FD23
27968 6040 Fl POP AP registers ...-'len -ill voices pop
27969 6041 Cl POP BC ace checked, and return
27970 6D42 El ?OP dL
27971 6043 Dl POP DE
27972 6044 ED45 RET'l

96

Appendix 3: Schematics

We received the following pages of scematics after we completed the first
volume. Due to the many questions we were asked concerning them and the
possibilities they have, we have reprinted them for any of you who are interested.
But for those who don't know a chip from a DIP switch, this appendix can safely be
ignored, because it is not crucial to understanding BASIC or the Adam. I also think
that it is very unlikely that you will be able to get your Adam fixed when it goes, and
suggest getting spare tape drives, power supply and keyboard for about $1 O (and
that's not hex) each, as listed by several surplus dealers.

~ m ' .t,.
' • -P11iE-.-

,,
'lfAc I ,, 01, .l.L.... "

~
V, ,,:if!L----....:

I
,! "' ~!) .. " "' -· •1~, B ,,.

e<.T•~2

'" ,,.
•!' ,OK ;l7

"p2'!1 -·~ ,-,---,--..... ,
•n~

.,v
I

i:"7, I

I I
777

98

I !

! ; ~1:{ I ~ ~ ;, 2 ~
~ .,._ 1

7

--"" I",

~ ? ? ? ' 1 ? ' 0

.,,..., ,.,
I

I
- '

'

99

i

,. 'a Ii.;/ ..
Dl oi~, ~0

_j__ --"

-

' •
' '
'

I
i

--'

' 0

' '
'

I
'
j -

.. ~
•5V

.., Jil

; ,,,

'

! I

JI ., ~, .. , ... •• ::
~! "v-,,

.,.
" '" " '" " '" ' '" " !D! ~ ,,.
" -~ " 2◄f~"'

ow>
8•·" • ~, " = " ... Ol = ..

mm " ,., .,
, .. " 8 .. '2 20
?,44 1,
OA'!I B -~ 8 .. ,, !7
9,._,1 39
i\A.i~ 22
i•O'I ZS ... ,.
... z,
"",. ... ~

1M) ,~
.>.OOillu~E" .., .. = ('iifs't

:.;;,;,-

.. ,,~154f66i,
.o.,~ OuT
AUO•O ,,.

"''"· VIC, v,o"'°i-.:
,:," .~

;~

""'
~t::;t.,;,

-,, .. ~ ::;>JC>
<;E-4
.,,;;: .. .:
um

(, .. ,
o.u~ ~«=Di:l

·e'.;}?,:}

!,JG7£0-

..
-~ .,
" " .,,
;,:,~ ..
'"

.,.
,.

,

-..
••

·-· .. 0,.,.. -<~,,. c,,o,,:,,__c.,_ ~I<:,,,.,.. ... ,--·~­____ ,,, .,_,.
,,,,.c,..,,_,. ""'--· _,, .. ~

...
U•

= ·- " ~-.,,

~-

""'l:',-=: ..:!..!.i.ll· •. ,1,.
-:.-::;.:.~

<fl _, •···· ,., •• , ••• ···-••U-·-· 0.,, 1 __ , .. ,
<;11 :.:::. ::-..:.. "' .. '! .. ----·•~-~-· ~-T•- ~\G•,..,,OWI

.•$

=, ..
Jil, 'J7

"""

,,

,

•'2v----­:,r l

100

...
r,.P -~ .. ••• ,

'" .. , ue ,., - ... , ... ·- - -~ ••• • - ,, ... , -~ -- C'"''O" ...

'°' -,., "1 , ,., - '" -· -~ • .. ~-s.a.•'3 .. , "
" • .

L-'=;~-f--' .. ,-.,_ __ _
<!~,v-_.l ~"

-sv

-, l
I •

I, lzr~9~~
~

• ' uao ~

"
.,,

,,~ = ~"'·•-- n~"i

"1
.,,

,
,,.,,.,, " ,~ ,. "" =·• ,au,,.._c<N-T ~· .,.,,1 .. ~. ,. ,

...-c
OMO

J7

-L.'

" ~--e;:-•s

; ~ "

,-~
~-l._zi-,-.--.· "'~•''~ ~·

j

~ . ..;

:~;fl
c..c ~D

.. ~ ..
- .. ~

a

" •
' ' " " ' '., ,,
" • u
•
" n ,.
~'

" nl

"

,_,...,. - 'J ;;

•
(:"• J><' I '"'

•c7t? 'i??1o'/
'-,---.'

'"~

...

l'IIOOl.lCTIO~
IIUE.IS.1! --·--·-·· o, ·-···"·•

D

"

"'

101

,., • •••• ~, •<•<~ ~-••U
.... , .. , .. •-•• ... =<~d~
- ;,c .r, ~:HA

l1 0

"'
~

•

" ··:t

' ·~,,, "

·~,.,..,"."·"' """".•··· .. , '"" ~,·

,,_,...,. •••• ...,,_oseHO u, ,, .. , , •~ •• .,,,,,1,~ ,. n
,...,.i:J,•OOl"O .,,.,.,a--~ •o
""'"·'-· ;i .. ,:;i, - .,, °'' ... , ,., """"'"''''"'"-
,o.,a "' ;.n •...-~ "'' ,,,~ ., ~-"'•·•• ""' ..,. .. ""'', ,,-,., ,,, ,.,,,., "'" r.c. • .,_ .. , '" .. ,o..,, .•. ,,,.,.,
~-,,.,,_ •. ,.,.~, •oo,o '"'''

' ,, ! l. "•a • • OO>l>

:t•,,;o;,'.n ••
• c ro••
~ ,4, .,,.,,.u...,,••

I

:
I

' l

..,.,

L

....

' '

•

"
"

....

l
•.. ..

I •• ,.

~

l I: " .. . •• • ·'

• -

J

102

~:
~: " t::::.l:
~~

I " ·~

'
i

-·• ,..j•.•.~

' •

...

•• ~.-,
••
" ,.,
~ -•"

..s.....h:--; ';/
~ •'-'

i

I I

I

'I

J_j
--

--

•

LJ

' ~-.,,. .. ,,
" ""• ·•· ~r::-: ::'•
,.

--+

••

...

"
1~77:;,_~P.-~~~

"

•-

103

cl

~-......:;,,.. ~ . .,
~"' .. 'iO: '.:.'- J,t.,'1;.,\~,0
~ a.ooaoc.-..,.,._,~.,.
"'-aJ.!• I_-..<:., __ _ ~--... .._ ..
""o~•;n,o,. ~n~ • ...,

\ ..
._,.., - ,o,., _ _,_s ,..,,,.,..,
~ """'"·"""= 7 ,-~..:....s. .•
>,<''" ·•,h,,.,.,_,,.,,.,,,, .• ,, "'~
'-·- •· •• ,< di .:u.' , .. ,., .. ,.,_,,...,_,_, ... ,_

CTIO"
REL.EAS(, .. -........ , ..

O• ... , .. ,,,.

i

Glossary

ASCII

bit

block

boot

buffer

byte

Central loop

Color table

Americon Stondord Code for Information Interchange. It 1s o
stondord set of letters, choracters or symbols that assigns
el!lch character a unique number represented by 7 b1 t..s Uhe
top bit 1s Ol. See the Smart.BASIC manual.

One binary digit It can either be on 1. Dor ofi (,),. depending
upon its voltage. There are ,5 bits in a byte, and~ bits, in a
nibble.

A group of I 024 (I Kl b1dtes It Is the bas, c unit used on the
tape or disk.

To load a program into RAt1. The Operating System load·;
the first block of the tape or disk (the Boot), and executes
1t, looding whotever It is told to.

An oreo in RAM thot is used by some routines to temporarily
store data that will change. It 1s similar to tables, but
tables usually don't change as much as buffer, ,Jo

A group of B b1 ts thot represent a number from O to 255 A
byte is often shown 1n 1\s hexadecimal form

The routine in BASIC that oversees the input., translation and
execution of commands.

The oreo in VRam that stores the color of each of the
patterns in the Pat.tern table (see ·101 I:,

104

command An order given to BASIC to perform a function. A command
con be a part of a line. It has a Primary word followed by
any crunch code needed to exec,,te that function.

Command vector This table stores the vectors for the commands listed 1n the
table Primary word table. The token for each command is 1.,sed to

look up the vector for that command in this table

CPU

crunch code

Crunch code
buffer

Crunch code
table

device

Execution loop

Central processing unit. the microprocessor or zeo

A group of tokens or codes that represent the string you
typed in. While a token is a single byte, crunch code can
refer to many bytes.

A buffer that stores the cr1,nch code for the last line you
typed in. If a line ni,mber exists for the line, then this
buffer.is copied to the Crunch code table.

A table in RAM that stores the parsed line you typed in a
form called crunch code. Lines in this table are part of a
program, with each line number entry in the Line number
table pointing to that line's crunch code in this table.

A piece of hardware that accepts commands from AdamNet
to either write to or read data from some sort of storage
system. The keyboard, tape and disk drives are examples of
devices.

The routine that loops endlessly until the end of the Crunch
code buffer or table, or the execution of the END or STOP
command. It gets a token from crunch code and calls the
vector in the Command vector table to execute the command.

105

floating point

Floating Point
Accumulator
(FPA)

hexadecimal (S)

keyword

line

Line number
table

macro

Name table

A form of representing numbers by having a 4 byte mantissa
and on exponent. It is often used for large numbers or
numbers with a decimal point.

An area in RAM that is used to store a flM\Jng point number
It is like the zso·s Accumulator, because it is use1j for many
calculal.lons. On the Adam, the FPA can either hol,J a floating
point number. or it can point to~ string.

Notation that uses base 16 to represent a byte with the
normal decimal d1g1ts and the letters A, B. C, D, E and F
(A= I 0, and C= 12, etc) Binary numbers can easily be shown
in hex, because t.he1J take t·,vo hex digits.

A keyword is a primary., secondary or tape word. They are
represented by tokens when a line 1s parsed into crunch code

A line can refer to the screen or to everything typed before a
return. It is usually the latter.

An area in RAM that stores your program·s line numbers in
ascending order. The entries 1n this table also point to the
line's crunch code in the Crunch code table.

A string that is printed when you hit a key as 1f 'JOU had
typed it in. Up to 30 macros can be stored by the HELLO
program in chapter I I

A table in VRAM that stores the offsets for the Pattern
table. It reflects the current patterns displo1Jed on the
screen. In the TEXT mode, the name table stores ASCII codes,
In HGR or GR, it is filled with Oto FF repeating

106

nibble

Operating
System (05)

page

parse

Pattern table

pointer

primary word

Pri mory word
table

A group of either the upper four bits, or lower four bits of a
byte.

A group of subroutines that can be used in order to perform
tedious or routine functions. Adam·s Operating :3ystem 1s
called EOS 1:E for Elementary or extended) It also uses o·:,-7
(which EQ'.3 ?S bu1l~ on) for c,jrf.ridges.

A gro1Jp of 256 ($FF) bIJtes. . ,

"To resolve into elements" The process of replacing the
ASCII codes of,~ line with tokens and crunch code

A table in VRam that stores the patterns of the chOrocters to
be displayed on the screen in groups of e bytes.

Two bytes 1n RAM that point to a different memory location
\hot stores some sort of data. A pointer can conta1 n data in
ploce of the other memory locotlon. (Although 1t 1s then not a
pointer).

A string of ASCII thot can be found in the Primary word
table. Primary wonJs are the first words in a line or
command. Typical primary words ore: GOTO, TEXT, and iF

The table that stores the ASCII strings of all the primary
words. The command's token and pointer to parse ,,ector 1 s
stored with the string.

107

RAM Random access memory, or, more accurately, read write
memory (but R'r-lM does not sound as good)

ROM Read only memonJ

secondary word A string of Ai:,Ci I t.hat. c,,n be found in the :3econdarid v·mrd
table. Second,~ry 'f/,:ir1js usu,3lly are used ,:,ft.er Prim,3n:1
words, and help rn r_rre synt~x of the command. T1dp1c,3l
second,3ry ·word are THE~·l, = ,3n1j -JI'

Secondary word
tnble

shape table

sprite

Sprite name
table

Sprite pattern
table

This table st.ores the ASCII st.rings of all the secon<Jary
words Along with the st.ring 1s the word's token, which 1s
used to identify the word in crunch code

A set of directions that BASIC follows in order to draw a
shape in the hi-res screen. A.unlimited number of shapes can
be stored in a shape table

A pattern defined by B or 32 bytes that can be moved on the
screen by defining:< and y coordinates

A table in VRam that has 32 entries Each entry point, to.,
pattern for that sprite, and the entry stores the c,J!,Jr ,,n,J
coordinates for that sprite

A table in VRam that stores the pattern of each sprite Each
pattern takes up either B bytes (BxB sprites) or 32 bytes
(16xl6 sprites) The bits in these bytes represent r.he pi,rnls
on the screen that are on or off

108

stack

string

String space

table

Tape vector
table

tape word

Tape word table

token

Reserved area of memory where the CPU stores t·wo byte
addresses or registers by Pushing to it, or POffing data off
it. Data is stored in the first-in-last-out met.hod in the
downward growing table.

A group of ASCII characters that is normally preceded by the
length of the st.ring.

The area in RAM Yv-here st.rings are stored ell.her for a string
variable or for temporary use.

An oreo in memory that groups similar doto into one piece
Though some tables may change, most remain the ·;ame and
store the same data needed continually by a routine or
routines.

A table in RAM that st.ores the vectors of the tape commands
in both the program mode and the immediate mode Vectors
ore stored in the order 1Jsed by the Tape word table.

A string of ASCII that can be found in the Tape word table.
Typical tape words include SAVE, LOAD, and CATALOG

This oreo in RAM st.ores the ASCII st.rings for each tape
command. 6ASIC compares the command you type 1n ,,,-,th the
strings in this table. It also holds the offset for the
commond's entry in the Tape vector table

A number used to represent a primary, secondary or tape
word. It helps speed up e:-<ec1..1tion ond soves memorrd by
reducing the amount of ·;pace taken up to store the parsed
line.

109

variable A type of commond \hot is stored os o vorioble. They ore
command used in equotions ond require porometers in porenthests.

Typicol vorioble commonds include COS, LEFT and VPO.S.

Variable table The table in memoriJ that stores all the variables th,,t are
used in a program. Each variable points to its dei1n1t1on,
which is either a string or a number Strings are storec 1n
String space, and numbers are stored in the Variable value
toble.

Variable value A table in RAM \ha\ stores the cr,rrent values ior al I the
table numeric variables in iloa\ing point format.

vector A pointer in RAM that points \o a routine tho\ w111 be
executed. A pointer only points to dato, while a vector
points to a routine.

VRAM 16K of RAM used by the Video Display Processor to store the
tables for the screen and sprites. It is accessed by using 1/0
space on the zeo.

110

